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Abstract. Decision trees (DTs) is a machine learning technique that
searches the predictor space for the variable and observed value that leads
to the best prediction when the data are split into two nodes based on
the variable and splitting value. The algorithm repeats its search within
each partition of the data until a stopping rule ends the search. Missing
data can be problematic in DTs because of an inability to place an ob-
servation with a missing value into a node based on the chosen splitting
variable. Moreover, missing data can alter the selection process because
of its inability to place observations with missing values. Simple miss-
ing data approaches (e.g., listwise deletion, majority rule, and surrogate
split) have been implemented in DT algorithms; however, more sophisti-
cated missing data techniques have not been thoroughly examined. We
propose a modified multiple imputation approach to handle missing data
in DTs, and compare this approach with simple missing data approaches
as well as single imputation and a multiple imputation with prediction
averaging via Monte Carlo Simulation. This study evaluated the perfor-
mance of the missing data approaches when data were missing at random
or missing completely at random. The proposed multiple imputation ap-
proach and the surrogate split approach had superior performance with
the proposed multiple imputation approach performing best in the more
severe missing data conditions. We conclude with recommendations for
handling missing data in DTs.

Keywords: Multiple Imputation · Classification and Regression Tree
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1 Introduction

Missing data are endemic in research and appropriate handling of missing data is
required to ensure unbiased parameter estimates. Missing data are often caused
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by participant nonresponse due to an unwillingness to divulge information, inad-
vertent skipping, fatigue, or time considerations (Hattie, 1983; Holman & Glas,
2005; Huggins-Manley, Algina, & Zhou, 2018; Moustaki & Knott, 2000). Missing
data are particularly problematic when nonresponding participants systemati-
cally differ from participants who completed the study. Known as nonresponse
bias (Lavrakas, 2008), systematic differences in responding may affect estimated
model parameters and threaten the validity of conclusions drawn from the sta-
tistical model (Enders, 2010; Groves & Peytcheva, 2008; Lavrakas, 2008).

Several methods have been developed for handling missing data due to non-
response (Baraldi & Enders, 2010). One widely recommended approach for han-
dling missing data is multiple imputation (Allison, 2002; Baraldi & Enders, 2010;
Enders, Dietz, Montague, & Dixon, 2006; Schafer & Olsen, 1998). Multiple impu-
tation is a four-step procedure. First, plausible values from a distribution specif-
ically modeled for the missing data are drawn. Second, the statistical model is
fit to the imputed dataset and parameter estimates and standard errors are re-
tained. Third, the first two steps are repeated a specified (e.g., 20) number of
times. Fourth, the parameter estimates and standard errors are pooled to deter-
mine the point estimate for each parameter along with an appropriate standard
error (van Buuren & Groothuis-Oudshoorn, 2011; Enders, 2010; Rubin, 1987).
Proper standard errors are calculated to account for the within (square of the
average standard error) and between (variance of the parameter estimates across
imputations) imputation variation in the parameter estimates. This final step is
referred to as the pooling step.

Multiple imputation is an effective missing data strategy for theoretically-
driven statistical models (e.g., regression, ANOVA, etc.; Baraldi & Enders,
2010); however, the pooling step can be challenging when fitting exploratory/data
driven models because the statistical models for each imputed dataset may in-
clude different model parameters (i.e., due to variable selection). Decision trees
(DTs) are an exploratory model where the standard multiple imputation ap-
proach is not viable. In DTs, the data are recursively split into two nodes based
on the variable and value that lead to an optimal prediction. Implementing the
standard multiple imputation approach with DTs will likely lead to different
variables being selected to partition the data in each imputed dataset, which
makes the pooling stage challenging, if not impossible. In this paper, we pro-
pose and examine the performance of a modified multiple imputation approach
for handling missing data with DTs. We compare the performance of the pro-
posed approach against the standard approach for handling missing data in DTs
(surrogate splits), simple missing data approaches (listwise deletion, delete if
selected, and majority rule), single imputation, and a multiple imputation ap-
proach that ignores variation DT structures and pools the predicted values from
the DTs (multiple imputation with prediction averaging). We continue with an
overview of the classification and regression tree (CART) algorithm for DTs,
review currently implemented missing data approaches in CART, and describe
our proposed multiple imputation approach. We then outline and review our
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simulation study to evaluate the performance of each missing data approach,
and conclude with recommendations.

1.1 Classification and Regression Tree (CART)

CART is an algorithm for DTs that has become a very popular machine learning
technique because of its ability to create powerful prediction models with non-
linear and interactive effects. Moreover, the resulting DT is easy to interpret.
CART is a greedy DT algorithm that recursively partitions the data and con-
siders the mean (quantitative outcome) or the mode (categorical outcome) as
the predicted value within each partition (James, Witten, Hastie, & Tibshirani,
2013; Loh, 2011). Three critical aspects of the CART algorithm are variable split-
ting (fit criteria), stopping criteria, and model selection. For variable splitting,
the CART algorithm selects the variable and partitioning value that splits the
data into two groups where the outcome is maximally homogenous within each
group (Breiman, Friedman, Stone, & Olshen, 1984). The two resulting groups
are often referred to as child nodes (with the node that was split referred to as
the parent node). All values of the predictors are considered potential splitting
values to partition the data into two child nodes. For a regression tree (numeric
outcome), the predictor variable and splitting value that minimizes the residual
sum of squares is selected to split the node (Loh, 2011; Gonzalez, O’Rourke,
Wurpts, & Grimm, 2018). For a classification tree (categorical outcome), the
predictor variable and splitting value that minimizes the Gini Index (entropy-
/information can be used instead of the Gini Index) is selected to partition the
node. This process in repeated on each child node until a stopping criterion is
reached. Stopping criteria include a minimum improvement in prediction accu-
racy, tree depth, and sample size required to partition a node. These stopping
criteria prevent further node splits, but are not often used for model selection.
Once a stopping rule is reached for each node and tree growth has stopped, the
DT is then pruned (reduced in size) with the final model selected based on k -fold
cross-validation. A large DT is often grown in order to ensure that a useful split
is not inadvertently missed because of an arbitrary stopping rule (Breiman et
al., 1984).

1.2 Missing Data Mechanisms

Missing data occur when an observation contains no value for a given variable.
There are numerous situations that lead to missing data, which makes it difficult
to know exactly how and why each missing value appears in a dataset. Rubin
(1976) proposed using observed variables to predict the occurrence of missing
values and coined the term missing data mechanisms to classify relationships
between missing values and the observed variables in a dataset. Specifically,
missing data mechanisms describe how the propensity for a missing value re-
lates to other measured variables and itself. Rubin (1976) presented three types
of missing data mechanisms: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). Data are MCAR when
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missing values on variable x are unrelated to both the observed variables and
the underlying values of x itself (Enders, 2003; Rubin, 1976). Thus, MCAR indi-
cates the occurrence of missing data is purely random making MCAR desirable;
however, MCAR assumptions are rarely met in practice (Enders, 2010; Muthén,
Kaplan, & Hollis, 1987; Raghunathan, 2004). Data are MAR when missingness is
systematic and correlated with other variables in the dataset. Specifically, data
are considered MAR when the missing values on the variable x are related to
other variables in a dataset but not related to x itself (Enders, 2003; Rubin,
1976). Most advanced missing data handling procedures (e.g., multiple impu-
tation, full information maximum likelihood) rely on MAR assumptions. Data
are MNAR when missing values on x are dependent on the underlying values
of x itself (Enders, 2003; Rubin, 1976). Missingness does not depend only on
observed data when data are MNAR making it the most challenging missing
data mechanism to handle in practice.

The missing data mechanisms determine how well a given missing data
approach will perform. According to Baraldi and Enders (2010), deletion ap-
proaches (i.e., listwise, pairwise, etc.) perform well in situations when data are
MCAR, whereas more advanced approaches, such as multiple imputation or full
information maximum likelihood (FIML), outperform deletion and produce un-
biased parameter estimates when data are MCAR or MAR. It is important to
note that many approaches commonly used to treat missing data (e.g., deletion,
imputation, FIML etc.) do not perform well when data are MNAR.

1.3 Missing Data in CART

Missing data are problematic in CART because an observation with a missing
value on the predictor variable provides no information about the child node to
which the observation belongs. The advanced missing data techniques for han-
dling MAR data, such as multiple imputation and full information maximum
likelihood, cannot be applied in a straightforward manner in CART, and DTs
more generally. Given the challenges for advanced missing data approaches, sim-
pler strategies have been utilized in CART. We review these approaches next.

Listwise Deletion A simple missing data strategy for CART is to remove
observations where a missing value is present. This approach is taken when
preparing the data for analysis.

Delete if Selected The second missing data strategy for CART is to retain
participants with missing values until a variable with missing values is selected.
For example, a participant has a missing value on x1. This participant would
be retained in the DT until x1 is selected to partition the data. Thus, if x1
is not selected, then the participant is retained in the model. Importantly, the
participant contributes to the formation of the DT until s/he cannot be placed
into a child node because of the missing value.
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Majority Rule In majority rule, if a variable is selected for partitioning and a
participant has a missing value, then the participant is placed in the child node
that contains the most observations. Thus, the participant contributes to the
formation of the DT even after the participant has a missing value for a selected
splitting variable.

Surrogate Splits When an observation has a missing value on a selected split-
ting variable, surrogate splits uses another variable in the dataset to place the
observation into a child node. That is, a surrogate variable is used to determine
the child node for the observation with a missing value. To do this, the parti-
tioning algorithm is applied with the two child nodes as a classification outcome
and the other variables in the dataset as splitting variables (Therneau & Atkin-
son, 2019). The usefulness of each surrogate variable is determined by examining
the misclassification error for each variable (misclassification error for predicting
child node using participants with available data). Additionally, the misclassifi-
cation rate is computed for majority rule, where observations with missing values
on the splitting variable is placed in the child node with the most observations.
Each variable that performs better than majority rule is considered a surrogate
and is ranked based on its performance. The first-ranked surrogate variable is
then used to place observations with missing values. If an observation is missing
the first-ranked surrogate, then the second-ranked surrogate variable is used to
place the observation, and so forth. In the rare situations where no surrogate
variables are present, the observation is placed in whichever child node contains
the most observations (Therneau & Atkinson, 2019).

Single Imputation Imputation strategies use information from the complete
data to estimate what a missing value would be if it was observed. Single impu-
tation draws a plausible value from a predictive distribution based on available
data (Little & Rubin, 2002) to fill in a given missing value. The imputation
model is typically built on a linear or logistic regression model depending on
the nature of the variable with the missing values; however, imputation models
have been built upon more complex algorithms, such as DTs and random forests
(Tang & Ishwaran, 2017). Once data are imputed, the CART algorithm can be
implemented using the imputed dataset, which does not have any missing values.

Multiple Imputation with Prediction Averaging Multiple imputation
with prediction averaging (Feelders, 1999; Twala, 2009) follows a fairly straight-
forward multiple imputation approach involving the four steps described above.
First, missing values are imputed from a distribution specifically modeled for the
missing data. Second, a DT is fit to the imputed data. Third, the first and second
steps are repeated multiple (e.g., 20) times. Fourth, the predicted values from
the DTs for an individual are averaged and the average serves as the predicted
value for the individual. This approach does not try to summarize the decision
rules of the DTs – just their predicted values. Thus, there is not a single DT
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with a single set of decision rules that can be interpreted. Averaging predicted
values from the DTs fit to multiple imputed datasets is a viable approach when
researchers are primarily interested in prediction because of the lack of inter-
pretability. This approach will likely lead to better prediction accuracy because
it is similar to bagging (Breiman, 1996).

Comparative Studies Several studies have been conducted to compare DT
missing data approaches (Batista & Monard, 2003; Beaulac & Rosenthal, 2020;
Feelders, 1999; Twala, 2009). Across four studies, the following missing data
approaches have been evaluated: listwise deletion, surrogate splits, single impu-
tation (i.e., k -nearest neighbor imputation, mean/mode imputation, EM/logistic
imputation, decision tree imputation, and distribution based imputation), multi-
ple imputation with prediction averaging, separate class, Branch-Exclusive Splits
Tree (BEST) algorithm, and several methods that were developed and imple-
mented in other DT algorithms (e.g., C4.5 and C5.0). Nearly all studies used
complete data sets (from the UCI machine learning repository) and artificially
imposed missing values.

The studies that evaluated multiple imputation with prediction averaging
found this approach outperformed all approaches it was compared against (e.g.,
single imputation, surrogate splits, listwise deletion) when data were MCAR and
MAR (Feelders, 1999; Twala, 2009). The same studies found single imputation
to be the second-best performing approach (Feelders, 1999; Twala, 2009). How-
ever, it is important to consider the different single imputation techniques. For
example, EM single imputation performed well for numeric variables (Twala,
2009), whereas decision tree single imputation and k -nearest neighbor imputa-
tion performed best with categorical variables (Twala, 2009; Batista & Monard,
2003). Surrogate splits performed well when there are high correlations among
variables (Twala, 2009) and listwise deletion generally performed poorly (Twala,
2009). Separate class and the BEST algorithm approaches have been found to
perform well when data were MNAR (Beaulac & Rosenthal, 2020).

Previous research supports the current method of employing multiple im-
putation in DTs (i.e., averaging predicted values over different imputed tree
structures) when data are MAR or MCAR, but only when a researcher is inter-
ested in prediction accuracy and not interested in interpretability. The purpose
of this study is to modify the current multiple imputation approach in such a way
that the proposed approach produces interpretable tree structures and reduces
prediction accuracy inflation.

1.4 Proposed Modified Multiple Imputation Approach

The modified multiple imputation approach for CART follows the first three
steps of multiple imputation; however, the pooling step is different. First, data
are imputed from a distribution specifically modeled for the missing data. Sec-
ond, a CART is fit to the imputed data with the complexity parameter (cp)
optimized using cost-complexity pruning through k -fold cross-validation. The cp
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Figure 1. Imputation and analysis phase of the modified multiple imputation approach
for DTs.

controls the tree size for each imputed dataset. We use the cp to control tree
size because the cp is used in rpart (Therneau & Atkinson, 2019), a common
CART package available in R and the package we use in our simulation work.
Other measures of tree size (e.g., depth) could be implemented based on avail-
ability. Third, the first two steps are repeated multiple times (e.g., 20). Figure 1
depicts a simple example of the first three steps. Fourth, the imputed datasets
are stacked to create a single, large data set consisting of m ·N rows, where m
is the number of imputed datasets and N is the sample size for each imputed
dataset. A CART is then fit to the stacked dataset with the cp set to the average
of the optimized cp obtained when a CART was fit to each imputed dataset.
Thus, in this pooling step, we pool the cp that controls tree growth and then
use this value to fit a CART to the stacked data. This leads to a single DT that
is indirectly optimized to the stacked multiply imputed dataset with a single set
of decision rules that are easily interpreted (shown in Figure 2).

Fitting the final CART to the stacked multiply imputed dataset provides an
optimal set of decision rules, but ignores the variability across imputed datasets.
While imputation variability is an important component of the calculation of
standard errors in the application of multiple imputation with a theoretically
driven statistical model (e.g., multiple regression model), standard errors are
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Figure 2. The pooling phase of the modified multiple imputation approach. Multiply
imputed datasets are stacked into a single data frame, a DT is fit to the stacked dataset,
and the DT is pruned based on the average tree structure from individual DTs.

not part of CART (and DTs more generally). The splitting values in CART
are considered point estimates and CART does not provide information on the
uncertainty of the point estimate.

Pooling the cp to control tree size is an important aspect of the modified mul-
tiple imputation approach. We note that the optimal cp cannot be determined
through k -fold cross validation of the stacked multiply imputed data because the
different folds of the data are too similar. For example, say we have a dataset
with 10% MCAR missingness on ten variables. We conduct m = 20 imputations
and stack the multiply imputed data. Approximately 35% of the sample will
have complete data leading to the same data appearing in the stacked data 20
times. Another 39% of the sample will be missing one value leading to 90% of
their data appearing in the stacked data 20 times. The high degree of the same
data appearing in the dataset is problematic for k -fold cross-validation because
the data from k−1 folds that are used to train the algorithm are too similar
to the data in the k th fold that is used to test the model. Thus, using k -fold
cross validation with the stacked multiply imputed data leads to an overgrown
(overfit) CART. Determining tree size based on pooling the cp leads to more
appropriately sized DTs.

Next, we conduct a Monte Carlo simulation study to examine the perfor-
mance of the modified multiple imputation approach outlined above and compare
its performance to the missing data methods currently implemented with DTs
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in terms of its predictive performance, variable selection, variable importance,
and tree size.

2 Methods

A Monte Carlo simulation study was conducted to compare how well the dif-
ferent missing data approaches performed with CARTs. Data were generated
from a population tree structure, missing values were generated following differ-
ent missing data protocols, CARTs were fit to these datasets using each missing
data handling approach, and we examined various indices of the resulting predic-
tion model. This process was repeated 1,000 times for every condition. Baseline
measures were taken from complete datasets (i.e., containing no missing val-
ues) and used for comparison. We examined the performance of each missing
data approach with respect to prediction accuracy, variable selection, and vari-
able importance. All programming scripts are contained on the third author’s
website.

2.1 Data Generation

Data were generated using R (R Core Team, 2020). All predictor variables were
independently drawn from a standard normal distribution (i.e., µ=0, σ=1). De-
pending on the condition, one (x1) or four (x1, x2, x3, x4) variables were created.
Three predictor variables, z1, z2, and z3, were then generated to either corre-
late .4 or .6 with the x variables, and z1, z2, and z3, were subsequently used
to generate the outcome using a series of decision rules from a population DT.
The population tree structure included six splits and seven terminal nodes. The
outcome variable, y, was generated from the population tree shown in Figure 3
with values generated from a normal distribution with the mean and variance
reported in each terminal node. Of note, the first split in the population tree
was on z1. Additionally, six distractor predictor variables, z4 through z9 were
generated from a standard normal distribution and correlated .15 with z1, z2,
and z3. Each simulated dataset included 10 or 13 predictor variables (i.e., three
used in the population DT, one or four used for missing data generation, and
six distractors), and the outcome variable.

2.2 Manipulated Features

Manipulated features included sample size and characteristics of missing values.
The sample sizes considered wereN = 200,N= 500, orN= 1,000 to cover a range
of sample sizes common in the social and behavioral sciences. Missing values
were imposed across all predictors, but they were not imposed on the outcome
variable. The nature of the missing values only varied for z1, which was the first
splitting variable in the population tree structure. The missing data mechanism
was varied, the percentage of missing data, the number of variables that the
likelihood of a missing value was dependent on, and the degree of association
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Z1

Z2 Z3

Z2 Z3 Z1

Group 1
µ = �1.70
�2 = 1.60

Group 2
µ = �0.93
�2 = 1.25

Group 3
µ = �0.40
�2 = 1.20

Group 4
µ = 0.13
�2 = 1.48

Group 5
µ = 0.06
�2 = 0.83

Group 6
µ = 0.40
�2 = 1.06

Group 7
µ = 0.66
�2 = 0.89

< .45 � .45

< .60 � .60 < .85

� .85

< �.20 � �2.0 < .70 � .70 < .95 � .95

Figure 3. Population Tree Structure

between the likelihood of missingness and the other variable(s) in the dataset.
Missing data generation on all other predictors (all predictor variables excluding
z1) were MCAR with a 2.5% probability of being recorded as missing.

Missing Data Generation The method for imposing missing values on z1
closely followed methods from Mazza, Enders, and Ruehlman (2015). Missing
values were designed to either be missing at random (MAR) or missing com-
pletely at random (MCAR). In the MAR condition, missing values on z1 were
generated to relate to one (x1) or four variables (x1, x2, x3, and x4). The as-
sociation between the likelihood of missingness and the other variable(s) in the
dataset was specified using a logistic regression model (Agresti, 2012; Johnson
& Albert, 1999; Mazza et al., 2015), with slope and intercept parameters chosen
to produce the desired level of association between the underlying missingness
probability and the complete variable(s) as well as the overall percentage of miss-
ing values. Slopes were selected such that the strength of association between
the underlying missingness probability and the complete variable(s) was either
R2 = .2 for a moderate association or R2 = .4 for a strong association. Intercepts
were selected so that the percentage of missing values on z1 was either 15% or
30%, which are rates commonly found in psychological and educational research
(Enders, 2003). The MCAR condition had fewer manipulated features than the
MAR conditions because missingness was unrelated to any other variables in
the dataset. Since MCAR occurs when the likelihood of missingness occurs at
random, the slope for the logistic regression model was 0 and intercepts were
chosen such that the percentage of missing values was either 15% or 30% on z1.
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Approaches for Handling Missing Data Listwise deletion, delete if selected,
majority rule, surrogate splits, single imputation, multiple imputation with pre-
diction averaging, and the proposed multiple imputation approach were used to
handle the missing data. Listwise deletion was employed by deleting cases with
missing values prior to analyses. Delete if selected was applied using the control
settings (i.e., usesurrogate=0) from the rpart package (Therneau & Atkinson,
2019) in R (R Core Team, 2020). Majority rule was also employed using the
control function by specifying that no surrogates would be used in the analyses
(i.e., maxsurrogate=0). By setting the max number of surrogates in the anal-
ysis to zero (maxsurrogate=0), the algorithm was forced to assign cases with
missing values based on majority rule. Delete if selected control setting spec-
ifies that the surrogate split method would not be used to treat missing data
(usesurrogate=0). The surrogate split approach used the default method (i.e.,
usesurrogate=2) to place observations with missing values. If no surrogates
were found, then majority rule was enacted.

For single and multiple imputation, data were imputed using the Multivari-
ate Imputation by Chained Equations (mice) package (van Buuren & Groothuis-
Oudshoorn, 2011) in R (R Core Team, 2020). The elementary imputation method
was specified using program defaults, which used predictive mean matching. In
the single imputation approach, missing values were imputed once to create a
single dataset (i.e., m = 1), which was then analyzed. In the multiple imputation
approaches, missing values were imputed 20 times (i.e., m = 20). According to
van Buuren and Groothuis-Oudshoorn (2011), mice assumes that the multivari-
ate distribution of an incomplete variable is completely specified by a vector of
unknown parameters, θ. Sampling iteratively, the algorithm models the condi-
tional distributions of the incomplete variable given the other variables to obtain
a posterior distribution of θ. Using Gibbs sampling, the algorithm selects and
fills in plausible values for the missing values on the incomplete variables. Out-
come distributions are assumed for each variable instead of the whole dataset.
The chained equations within mice refer to concatenating univariate procedures
to fill in missing data (van Buuren & Groothuis-Oudshoorn, 2011).

Stopping Criteria DTs recursively partitions data until one of the stopping
criteria is reached for each node. Optimal tree sizes were determined using a two-
step procedure for listwise deletion, delete if selected, majority rule, surrogate
splits, and single imputation. First, all stopping criteria were set to small val-
ues to generate an overgrown tree. For all splits in this overgrown tree, 10-fold
cross-validation was used to determine the relative cross-validation prediction
error associated with the split. The tree was then pruned by specifying the cp
associated with the smallest estimate of cross-validated prediction error from
the 10-fold cross-validation. In multiple imputation, each imputed dataset was
analyzed separately and each tree was overgrown. The cp associated with the
optimal tree size determined through 10-fold cross-validation was retained. In
multiple imputation with prediction averaging, the predicted values from each
pruned tree were averaged. In the modified multiple imputation approach, the
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multiply imputed data were stacked and analyzed with the cp set to the aver-
age value of the cp obtained when the CART was fit to each imputed dataset
separately.

There are several viable approaches to choosing tuning parameters in ma-
chine learning. This study used the minimum cross-validated prediction error to
determine the best model that would optimize prediction accuracy. However, it
is important to note that methods like the “one standard error” rule (Breiman
et al., 1984) are often used in practice. The “one standard error rule” uses the
most parsimonious model whose error is no more than one standard error above
the error of the best model (Hastie, Tibshirani, & Friedman, 2009).

2.3 Evaluation Metrics

Four evaluation metrics were examined to assess and compare the performance of
the missing data approaches. The metrics were the averaged mean square error
(MSE) in a test dataset, the proportion of replicates where the first splitting
variable was z1, variable importance metrics, and the median number of splits.

The final DT from each missing data approach was used to generate predicted
values in the test dataset with N = 10,000 drawn from the same population.
The test dataset contained no missing values, and was not used to estimate any
of the models. The predicted values in the test dataset were calculated and used
to determine the MSE - a measure of prediction accuracy. Lower MSE values
indicated stronger prediction accuracy, whereas higher MSE values indicated
weaker prediction accuracy. The performance of missing data approaches was
compared to each other and with the CART estimated using the complete data.

The second evaluation metric was proportion of replicates where z1 was the
first variable selected to split the data. Recall that variable z1 was the first
spitting variable in the population tree. Thus, the proportion of times z1 (i.e.,
the target variable) was correctly selected for the first split indicates the CART
properly selected the primary splitting variable. The third evaluation metric
was variable importance. Variable importance assesses the degree to which each
variable contributes to the prediction of the outcome. Variable importance is
calculated for every predictor by summing together the decrease in error for
every split using the variable as the splitting variable. We assessed and compared
variable importance values for z1, z2, and z3 across each missing data approach,
and compared variable importance to the values obtained when analyzing the
complete data.

The median number of splits was the last evaluation metric. Seven decision
trees were fit (i.e., complete data and the six missing data approaches) for each
replication within a condition. The median number of splits across all replications
within a condition was recorded for each approach. This was compared across
missing data approaches and compared to the number of splits in the population
DT as an indication of proper tree size.
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3 Results

3.1 Summary

Overall, the proposed multiple imputation approach and surrogate splits per-
formed well across all outcome measures. The proposed multiple imputation ap-
proach (closely followed by single imputation) performed best when data were
MAR with multiple variables strongly predicting missing values and strong as-
sociations among predictors. Surrogate splits performed well when data were
MCAR or MAR with a single variable predicting missing values and weak as-
sociations among predictors. Other approaches stood out on specific outcomes.
For example, multiple imputation with prediction averaging had the greatest pre-
diction accuracy. Listwise deletion correctly selected z1 for the first split more
often than all other approaches. However, these methods only performed well on
specific outcomes and not across all outcome measures. The following sections
summarize and compare the approaches for each outcome.

3.2 Mean Square Error (MSE)

MSE values for each missing data approach are shown in Figure 4 for four
representative conditions. The conditions were selected to represent (1) a mild
MCAR condition (i.e., 15% missingness and predictors correlated .16), (2) a mild
MAR condition (i.e., 15% missingness, weak association among predictors and
missing values (R2 = .2), a single predictor of missingness, predictors correlated
.16), (3) a moderate MAR condition (i.e., 30% missingness, greater association
among predictors and missing values (R2 = .4), a single predictor of missingness,
predictors correlated .36), and (4) a severe MAR condition (i.e., 30% missingness,
greater association among predictors and missing values (R2 = .4), multiple
predictors of missingness, predictors correlated .36).

Overall, a higher percentage of missing data led to higher MSE across all
approaches for handling missing data. This effect was greater in the smaller
sample size conditions. Multiple imputation with prediction averaging produced
the least amount of bias, which was likely because this approach is an ensemble-
type approach like bagging (Breiman, 1996). The average MSE for this approach
most closely resembled the results when the CART was fit to the complete data
(see Figure 4). The proposed multiple imputation approach and surrogate splits
produced more bias than the multiple imputation approach with prediction av-
eraging. Differences between the proposed approach and surrogate splits were
minimal (i.e., average MSE typically only differed by .01) and became less ap-
parent in the larger sample size conditions. The proposed multiple imputation
approach produced less bias than surrogate splits when there were multiple pre-
dictors of missingness, stronger associations between predictors and missingness,
and a higher percentage of missing data (fourth panel in Figure 4). This ap-
proach generally handled small sample sizes (N = 200) better than surrogate
splits across all MAR conditions.
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Figure 4. Bias produced in each missing data approach in four representative condi-
tions. Missing data approaches include: (A) Baseline - No Missing Data; (B) Listwise
Deletion; (C) Delete if Selected; (D) Majority Rule; (E) Surrogate Splits; (F) Single
Imputation; (G) Proposed Multiple Imputation Approach; (H) Multiple Imputation
with Prediction Averaging. The first panel represents a condition where 15% of the
data on z1 were MCAR, the predictors were correlated .16, and N = 200. In the condi-
tion represented in the second panel (top right), 15% of the data on z1 were MAR with
a single variable predicted missing values (R2 = .2), predictors were correlated .16, and
N = 1,000. Third panel (bottom left) represents a condition where 30% of the data on
z1 were MAR where a single variable predicted missing values (R2 = .4), predictors
were correlated .36, and N = 500. The fourth panel represents a condition where 30%
of the data on z1 were MAR with multiple variables predicted missing values (R2 =
.4), predictors were correlated .36, and N = 200.

Surrogate splits often produced the same amount of bias as the proposed
multiple imputation approach when data were MCAR and in the MAR con-
ditions with a single predictor of missingness and weaker associations between
variables and missingness (first and second panel in Figure 4). Overall surrogate
splits produced less bias than the proposed approach across these mild miss-
ing data conditions (see Table S1 in supplemental materials). Single imputation
closely followed the proposed multiple imputation approach and surrogate splits
but had slightly greater average MSE values. Also, single imputation performed
fairly well in the conditions where missingness was related to multiple predictors.
Delete if selected and listwise deletion produced slightly greater bias across all
the conditions and majority rule produced the greatest amount of bias across all
conditions.
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3.3 Proportion of Correct First Variable Splits

The proportion of times that z1 was chosen for the first split was recorded.
Figure 5 illustrates the performances of each approach in four example conditions
that range from mild to severe missing data conditions in this simulation. Across
all approaches, higher rates of missing values led to fewer instances that z1
was chosen for the first split. Greater effects were found in small sample sizes.
Conditions represented in Figure 5 have a consistent sample size and rate of
missing to simplify comparisons across missing data patterns and associations.

Listwise deletion correctly selected first split more frequently than the other
approaches and most closely resembled the complete data conditions (see Fig-
ure 5). The performance of the other approaches depended on the missing data
pattern, strength of association among predictors and missing values, and the
percentage of missing data. When data were MCAR, surrogate splits and delete
if selected correctly chose z1 for the first split more often than the remaining
approaches (first panel in Figure 5).

Performance across the MAR conditions depended on the strength of asso-
ciation among predictors and percent missingness. When there were weak as-
sociations between predictors and missing values (i.e., association between z1,
z2, z3 and x variables used to generate missing values) and only 15% missing
data, the proposed multiple imputation approach selected z1 more often than
all other approaches with the exception of listwise deletion. However, delete if
selected and surrogate splits outperformed the proposed multiple imputation
approach in the same conditions with 30% missing data (second panel in Fig-
ure 5). This pattern of results can be found in supplemental materials (see Table
S2 in supplemental materials). When there were strong associations between the
predictors and variables used to generate missing values, the proposed multiple
imputation approach correctly selected z1 more frequently than the remaining
approaches, such as single imputation, delete if selected, surrogate splits, and
majority rule (fourth panel in Figure 5).

Averaging the proportion of correct first variable splits across all conditions
leads to the following set of results. In the complete data conditions, z1 was
selected for the first split 98% of the time. Listwise deletion correctly identified
the first split 94% of the time, which was more often than the other approaches
(Table 1). The proposed multiple imputation approach correctly selected z1 for
the first variable split 88% of the time, whereas single imputation averaged 87%.
Delete if selected slightly outperformed surrogate splits, but both approaches
were nearly identical in correctly selecting the variable for first split 85% of the
time. Majority rule selected the correct variable for the first split 56% of the
time. Multiple imputation with prediction averaging did not produce a single
tree structure, so this outcome was not evaluated for this approach.

3.4 Variable Importance

Variable importance values ranged from 0 to 1 for z1, z2, and z3. Recall that
z1 was the target variable that contained missing values, was the first variable



142 D. Rodgers et al.

Figure 5. Correct First Variable Splits. The number of times each missing data ap-
proach correctly chose z1 for the first split in DT out of 1,000 replications is shown
in Figure 5. Missing data approaches include: (A) Baseline - No Missing Data; (B)
Listwise Deletion; (C) Delete if Selected; (D) Majority Rule; (E) Surrogate Splits; (F)
Single Imputation; (G) Proposed Multiple Imputation Approach; (H) Multiple Impu-
tation with Prediction Averaging. The first panel represents a condition where 30% of
the data on z1 were MCAR, the predictors were correlated .16, and N = 500. In the
condition represented in the second panel (top right), 30% of the data on z1 were MAR
where a single variable predicted missing values (R2 = .2), predictors were correlated
.16, and N = 500. Third panel (bottom left) represents a condition where 30% of the
data on z1 were MAR with a single variable predicted missing values (R2 = .4), predic-
tors were correlated .36, and N = 500. The fourth panel represents a condition where
30% of the data on z1 were MAR with multiple variables predicted missing values (R2

= .4), predictors were correlated .36, and N = 500.

Table 1. Average Proportion of Correct First Variable Splits

Complete
Data

Listwise
Deletion

Delete if
Selected

Majority
Rule

Surrogate
Splits

Single
Imputation

MI Proposed
Approach

.980 .941 .848 .562 .854 .873 .882

split, which is often associated with the greatest variable importance values. In
conditions where the data were MCAR, listwise deletion most closely mimicked
the variable importance values from the complete data conditions (see the left
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panel of Figure 6). Surrogate splits performed well, but tended to overestimated
the importance of z1 and z2, and underestimated the importance of z3, espe-
cially with larger sample sizes. The single and proposed multiple imputation ap-
proaches performed moderately well and produced nearly identical results. Both
approaches underestimated the importance of z1 and slightly overestimated the
importance of the other predictors. The delete if selected and majority rule ap-
proaches mimicked the pattern for surrogate splits, but had greater discrepancy
in overestimating the importance of z1. Majority rule consistently performed
poorly with respect to this outcome compared to the other missing data han-
dling approaches.

Figure 6. Variable importance measures from each missing data approach in three
representative conditions. Missing data approaches include: (A) Baseline - No Missing
Data; (B) Listwise Deletion; (C) Delete if Selected; (D) Majority Rule; (E) Surrogate
Splits; (F) Single Imputation; (G) Proposed Multiple Imputation Approach; (H) Multi-
ple Imputation with Prediction Averaging. The first panel represents a condition where
15% of the data on z1 were MCAR, the predictors were correlated .36, and N = 500. In
the condition represented in the second panel, 15% of the data on z1 were MAR where
a single variable predicted missing values (R2 = .2), predictors were correlated .16, and
N = 500. Third panel represents a condition where 30% of the data on z1 were MAR
where multiple variables predicted missing values (R2 = .4), predictors were correlated
.36, and N = 200.

The results for variable importance revealed a distinction between the MAR
conditions. MAR conditions with a single variable predicting missing values
and weak associations among variables had similar results when compared to
MCAR conditions. However, in the more severe MAR conditions (i.e., multi-
ple variables predicting missing values, stronger association among predictors,
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high percentage of missing data), single imputation started to outperform the
other approaches. Single imputation still underestimated the importance of z1
and overestimated the other variables, but this approach had small discrepan-
cies when compared to the complete data conditions. The proposed multiple
imputation approach and delete if selected closely followed single imputation.
Listwise deletion followed the same trajectory as the complete data but under-
estimated the importance of all predictors with larger discrepancies. Surrogate
splits performed poorly in the most severe MAR conditions because it largely
underestimated the importance of z1 and overestimated the importance of z2
(third panel in Figure 6). Majority rule consistently had the greatest discrepan-
cies (shown in Figure 6).

3.5 Median Number of Splits

The median number of splits for each DT was recorded. The population tree
contained six splits. The median number of splits across each approach ranged
from zero to four indicating that each DT tended to underfit the data. There
were little differences among most approaches across conditions. Complete data,
listwise deletion, delete if selected, surrogate splits, and single imputation all had
a median of two splits. The proposed multiple imputation approach often aver-
aged one more split than the other approaches in the large sample size conditions
(N = 1,000), but the overall differences were minimal. Majority rule approach
averaged two splits in most conditions, but failed to find any variable to predict
the outcome (i.e., resulting in zero splits) when there was a high percentage of
missing values that were MAR. Multiple imputation with prediction averaging
did not produce a single DT structure, so the median number of splits was not
recorded.

4 Illustrative Example

Data were drawn from the Head Start Family and Child Experiences Survey
1997-2001 (FACES1997) study. The goals of FACES1997 were to (1) examine
whether Head Start enhances children’s development and school readiness, (2)
evaluate whether Head Start strengthens families as the primary nurturers of
their children, (3) determine whether Head Start provides children with high
quality educational, health, and nutritional services, and (4) determine how
Head Start classroom quality is related to children’s outcomes. FACES1997
is a longitudinal study of 1,968 children enrolled in a Head Start program
in 1997 with data collected on the cognitive, social, emotional, and physical
development of Head Start children, characteristics and opinions of Head
Start teachers, and characteristics and evaluations of Head Start classrooms
(https://www.childandfamilydataarchive.org/cfda/archives/cfda/studies/4134).

The analytic sample contained N = 785 children who were in first grade
during the 1999-2000 school year and completed cognitive testing in the spring
of 2000. Of these 785 children, 370 (47%) were female. The sample was diverse



A Multiple Imputation Approach for CART 145

with respect to race/ethnicity. Twenty-nine percent of this subsample identified
as white (non-Hispanic), 39% black (non-Hispanic), 1% Asian or Pacific Islander,
and 2% Native American Indian or Alaskan. Thirty-two percent of the sample
identified as Hispanic. Seventy-one percent were living below the poverty line
determined by an income-to-needs ratio less than 1.0. Seventy-seven percent of
families reported that at least one parent obtained a 12th grade education (e.g.,
graduated from high school, received a GED).

These data were split into training and testing samples using a 60-40 split.
Given the focus of the paper, the testing sample had complete data to make
model evaluation clean, and the training data contained missing values. The
training data were analyzed to develop statistical models using different miss-
ing data handling methods. DTs were overgrown and then pruned using cost-
complexity pruning and k-fold cross-validation following the approach in our
simulation work. Once an optimal model was determined for the training data,
the model was used to generate predicted values in the testing dataset and the
MSE was calculated.

The outcome variable was the Peabody Picture Vocabulary Test (PPVT;
Dunn & Dunn, 1981) standard score, which was measured in the spring of 2000.
Predictor variables included a series of assessments collected during Head Start
in the fall of 1997. These assessments were academic (e.g., Woodcock-Johnson
Letter-Word Identification) or social (e.g., Social Skills Rating Scale) in nature.

5 Results

The DTs from each missing data handling method are shown in Figure 7. Each
terminal node contains the predicted value of the PPVT and the percent of the
sample in the node. The predictor variable used to split the data is labeled within
each tree node and split values are presented within the tree branches. Overall,
DTs varied across methods. Note that multiple imputation with prediction aver-
aging did not produce a consistent tree structure, so it is not included in Figure 7.
For the remaining approaches, the number of splits across DTs ranged from 1 to
13. However, many of the resulting trees shared splitting variables and values.
In all remaining missing data approaches, the first splitting value was a score of
15 on identifying colors by name (COLORS). The tree produced from the sur-
rogate split approach contained no subsequent splits. For all other approaches,
the node for participants with identifying colors by name greater than or equal
to 15 was split based on a value of 88 on the Woodcock-Johnson Letter-Word
Identification (WJWORDSS; Woodcock & Johnson, 1989). Notably, majority
rule and single imputation had identical tree structures and did not contain any
further splits. Delete if selected, listwise deletion, and the modified multiple im-
putation approach shared another common split value of nine on print concepts
(PRCONCEPT). The DT using the modified multiple imputation approach did
not contain any additional splits, whereas the listwise deletion approach con-
tained one additional split at the value of five on McCarthy Drawing Test score
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(DRAWSCR; McCarthy, 1972). Lastly, the delete if selected approach contained
several additional splits beyond those described above (shown in Figure 7).

Multiple Imputation Listwise Deletion

Single Imputation Majority Rule

Surrogate Splits Delete if Selected

Figure 7. Illustrative Data DTs
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Variable importance measures for the predictors for each DT are shown in
Table 2. There was agreement across many of the missing data approaches.
All missing data approaches that produced variable importance measures em-
phasized COLORS as an important predictor. On the other hand, a few vari-
ables were highlighted among most, but not all, missing data approaches. For
example, all the approaches that were evaluated, except surrogate splits, in-
dicated that WJWORDSS was an important variable. Nearly all approaches
highlighted print concepts, The McCarthy Drawing Test score, book knowledge
(BOOKKNLG), social awareness (SAWARE), and the Child Behavior Prob-
lems Index (PBEPROB; Peterson & Zill, 1986) as important variables in all
DTs, with majority rule as the exception. The last three predictors were only
highlighted by a few approaches. Social skills (SSRS; Gresham & Elliott, 1990)
was deemed important with listwise deletion, delete if selected, and surrogate
split approaches, whereas social skills/positive approach to learning (PSSPAL)
was considered important using listwise deletion, delete if selected, and single
imputation. Behavior problems total score (BPROB) was uniquely selected as
an important predictor by the delete if selected approach. In summary, all ap-
proaches agreed on the variable of greatest importance (i.e., COLORS), and
six out of the ten remaining predictors were highlighted in DTs using different
missing data approaches.

Table 2. Illustrative Data Variable Importance

Predictors
Listwise
Deletion

Delete if
Selected

Majority
Rule

Surrogate
Splits

Single
Imputation

MI Proposed
Approach

COLORS 0.34 0.37 0.86 0.55 0.46 0.44
WJWORDSS 0.21 0.07 0.14 - 0.14 0.12
PRCONCPT 0.21 0.22 - 0.13 0.12 0.17
DRAWSCR 0.09 0.04 - 0.04 0.04 0.03
BOOKKNLG 0.08 0.11 - 0.11 0.10 0.11
SAWARE 0.03 0.10 - 0.14 0.13 0.12
PBEPROB 0.02 0.01 - - 0.01 <0.01
SSRS 0.02 0.03 - 0.03 - -
PSSPAL 0.01 0.02 - - <0.01 -
BPROB - 0.02 - - - -
BEARCNT - - - - - -

Predictions from each DT were generated for the test data. Test data con-
tained no missing values and consisted of 314 participants. To evaluate prediction
accuracy, the MSE (i.e., average squared difference of estimated scores from DTs
and actual scores on test data) was calculated for each missing data approach
(see Table 3). Overall, listwise deletion produced the best prediction of PPVT in
the test data. The proposed multiple imputation approach had the second-best
performance. Majority rule, single imputation, and multiple imputation with
prediction averaging performed similarly to the proposed multiple imputation
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approach with only minor increases in MSE. Delete if selected performed poorly,
and surrogate splits had the poorest performance.

Table 3. Illustrative Data MSE and R2

Measures
Listwise
Deletion

Delete if
Selected

Majority
Rule

Surrogate
Splits

SI
MI Proposed

Approach
MI Prediction

Averaging

MSE 134.60 149.85 145.16 156.24 146.07 144.00 146.17
R2 0.37 0.35 0.36 0.25 0.36 0.37 0.33

Note. SI: Single Imputation.

We also calculated an R2 value to measure predictive quality of each missing
data approach (shown in Table 3). Specifically, R2 was calculated as the squared
correlation between the predicted and observed outcome values using the test
data. It represents the percent of variance in test data PPVT scores accounted
for by the prediction model using each missing data approach. Thirty-seven
percent of the variance in PPVT scores was accounted for by the predicted
values produced by the listwise deletion approach. Similarly, 37% of the variance
in PPVT scores was accounted for by predicted scores from the modified multiple
imputation approach. Single imputation and majority rule approach led to R2

values of 36% and delete if selected led to an R2 of 35%. Multiple imputation
with prediction averaging had an R2 of 33% and the DT using surrogate splits
had an R2 of 25%. In summary, listwise deletion and the modified multiple
imputation approach led to DTs that performed best in the test dataset.

6 Discussion

A modified multiple imputation approach was proposed for handling missing
data in DTs. The proposed approach involves four steps: (1) Impute missing
values, (2) Fit a DT to the imputed dataset, prune the DT using k -fold cross
validation, and retain the associated cp value, (3) Repeat steps 1 and 2 mul-
tiple times, and (4) stack all imputed datasets into a single data frame, fit a
DT to the stacked dataset, and using the averaged cp value from when the DTs
were fit to each imputed dataset. A simulation was conducted to compare the
proposed approach to listwise deletion, delete if selected, majority rule, surro-
gate splits, single imputation, and multiple imputation with prediction averaging
under multiple MAR and MCAR conditions.

6.1 Summary of Findings

Overall, all missing data approaches produced DTs with better performance in
conditions with larger sample sizes and lower rates of missing values. Across the
outcome measures, the proposed multiple imputation method performed bet-
ter than the other approaches when data were MAR with a strong association
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between multiple predictors and missing values. Additionally, the proposed mul-
tiple imputation approach handled small sample sizes (N = 200) better than
the other approaches across the MAR conditions. On the other hand, surrogate
splits performed the best when data were MCAR and when data were MAR with
a single predictor that had a weak association with missing values. It appears
the weak associations in these MAR conditions led to conditions that were close
to MCAR.

In addition to the simulation work, empirical data from FACES 1997-2001
were analyzed to compare the seven approaches for handling missing data. A
series of assessments were taken on a total of N = 785 children. We found that
listwise deletion and multiple imputation had the highest prediction accuracy as
measured by MSE and R2. Majority rule, single imputation, and delete if selected
had relatively high prediction accuracy. Surprisingly, multiple imputation with
prediction averaging had lower prediction accuracy and surrogate splits had the
worst prediction accuracy.

6.2 Recommendations

The results of our simulation research leads to the following set of recommenda-
tions. The proposed multiple imputation approach is recommended in situations
where data are MAR, especially when dealing with small sample sizes. Surro-
gate splits are recommended when data are MCAR or mildly MAR (i.e., data
are MAR with weak associations and a fairly large sample sizes, N ≥ 500). If a
researcher is only interested in prediction accuracy and has no interest in inter-
preting the DT, multiple imputation with prediction averaging is recommended
for either MAR and MCAR data. However, in these situations, an ensemble
method, such as random forests (Breiman, 2001) or boosting (Breiman, 1998;
Friedman, 2002), may be preferred. Single imputation is a simple approach, but
is not recommended over the proposed multiple imputation approach because it
often underperformed by comparison.

Listwise deletion, delete if selected, and majority rule are not generally rec-
ommended. Both listwise deletion and delete if selected could be recommended
when data are MCAR and there is a small percentage of missing data. Deletion
approaches may be a relatively simple and convenient method for handling miss-
ing data in such situations, but these methods proved inferior in most conditions.
Majority rule generally had the poorest performance across all conditions and is
not recommended.

6.3 Limitations and Future Directions

A limitation of this study is that missing data were handled with a single type of
imputation. A variety of imputation methods have been developed in statistical
frameworks, which are typically built upon linear or logistic regression models.
However, imputation models have also been built upon partitioning algorithms,
such as DTs and random forests (Tang & Ishwaran, 2017), and these imputation
approaches were not considered.
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A second limitation is that we only considered one pooling approach in the
proposed multiple imputation approach. That is, when analyzing the stacked
multiply imputed dataset, the cp was set to the average value obtained from an-
alyzing each imputed dataset. Another metric may be more appropriate instead
of the average. For example, the minimum value of the cp or the 5th percentile
would lead to larger DTs and may be more appropriate because the resulting
DTs were smaller than the population DT. More research is needed to deter-
mine the optimal approach to determining the size of the DT with the stacked
multiply imputed data.

Another consideration is that this study evaluated how well missing data ap-
proaches performed when the predictors contain missing values and the outcome
variable does not. The nature of the missing values was manipulated only on the
first splitting variable, z1. However, in practice, missing values may appear across
both the predictors and outcome variable. Future studies should consider how
to treat the case where values on the outcome variable are missing.

6.4 Concluding Remarks

The proposed modified multiple imputation approach for handling missing data
in DTs was found to outperform surrogate splits, the default approach in sev-
eral DT packages, for handling MAR data, particularly in small samples. To our
knowledge, multiple imputation has only been implemented in DTs by averag-
ing predicted values from different tree structures fit to each imputed dataset
(Feelders, 1999; Twala, 2009). Our proposed modified multiple imputation ap-
proach leads to a single DT so that a single set of splitting variables can be
interpreted.

Machine learning techniques are becoming more widely accepted in the social
and behavioral sciences where missing data are a common problem. Additional
research is needed to more fully examine how different machine learning al-
gorithms, including different DT algorithms, such as conditional inference trees
(Hothorn, Hornik, & Zeileis, 2006) and evolutionary trees (De Jong, 2006; Eiben,
2003; Fogel, Bäck, & Michalewicz, 2000), perform under a variety of missing data
conditions and whether novel missing data approaches can improve upon the de-
fault strategies. We look forward to this research.
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