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Abstract. It is crucial for policymakers to understand the commu-
nity prevalence of COVID-19 so combative resources can be effectively
allocated and prioritized during the COVID-19 pandemic. Tradition-
ally, community prevalence has been assessed through diagnostic and
antibody testing data. However, despite the increasing availability of
COVID-19 testing, the required level has not been met in parts of the
globe, introducing a need for an alternative method for communities to
determine disease prevalence. This is further complicated by the observa-
tion that COVID-19 prevalence and spread vary across different spatial,
temporal, and demographic verticals. In this study, we study trends in
the spread of COVID-19 by utilizing the results of self-reported COVID-
19 symptoms surveys as a complement to COVID-19 testing reports.
This allows us to assess community disease prevalence, even in areas
with low COVID-19 testing ability. Using individually reported symptom
data from various populations, our method predicts the likely percent-
age of the population that tested positive for COVID-19. We achieved
a mean absolute error (MAE) of 1.14 and mean relative error (MRE)
of 60.40% with 95% confidence interval as [60.12, 60.67]. This implies
that our model predicts +/- 1140 cases than the original in a population
of 1 million. In addition, we forecast the location-wise percentage of the
population testing positive for the next 30 days using self-reported symp-
toms data from previous days. The MAE for this method is as low as
0.15 (MRE of 11.28% with 95% confidence interval [10.9, 11.6]) for New
York. We present an analysis of these results, exposing various clinical
attributes of interest across different demographics. Lastly, we qualita-
tively analyze how various policy enactments (testing, curfew) affect the
prevalence of COVID-19 in a community.
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1 Introduction

The rapid progression of the COVID-19 pandemic has provoked large-scale data
collection efforts on an international level to study the epidemiology of the
virus and inform policies. Various studies have been undertaken to predict the
spread, severity, and unique characteristics of the COVID-19 infection, across a
broad range of clinical, imaging, and population-level datasets (Gostic, Gomez,
Mummah, Kucharski,x& Lloyd-Smith, 2020; Liangxet al., 2020; Mennixet al.,
2020; Shixet al., 2020). For instance, Mennixet al. (2020) use self-reported data
from a mobile app to predict a positive COVID-19 test result based upon symp-
tom presentation. Anosmia was shown to be the strongest predictor of disease
presence, and a model for disease detection using symptoms-based predictors was
indicated to have a sensitivity of about 65%. Studies like Parmaxet al.(2020) have
shown that ageusia and anosmia are widespread sequelae of COVID-19 patho-
genesis. From the onset of COVID-19, there also has been a significant amount of
work in mathematical modeling to understand the outbreak under different sit-
uations for different demographics (Mennixet al., 2020; Saad-Royxet al., 2020;
Wilder, Mina,x& Tambe, 2020). However, these works primarily focus on the
population level. Further, the estimation of different transition probabilities to
move between compartments is challenging.

Carnegie Mellon University (CMU) and the University of Maryland (UMD)
have built chronologically aggregated datasets of self-reported COVID-19 symp-
toms by conducting surveys at national and international levels (Delphixgroup,
2020; Fanxet al., 2020). The surveys contain questions regarding whether the re-
spondent has experienced several of the common symptoms of COVID-19 (e.g.
anosmia, ageusia, cough, etc.) in addition to various behavioral questions con-
cerning the number of trips a respondent has taken outdoors and whether they
have received a COVID-19 test.

In this work, we perform several studies using the CMU (Delphixgroup,
2020), UMD (Fanxet al., 2020), and OxCGRT (Hale, Webster, Petherick,
Phillips,x& Kira, 2020) datasets. Our experiments examine correlations among
variables in the CMU data to determine which symptoms and behaviors are most
correlated to high percentages of Covid Like Illness (CLI). We investigate how
the different symptoms impact the percentage of populations with CLI across
different spatio-temporal and demographic (age, gender) settings. We also pre-
dict the percentage of population who got tested positive for COVID-19 and
achieve 60% Mean Relative Error. Further, our experiments involve time-series
analysis of these datasets to forecast CLI over time. Here, we identify how dif-
ferent spatial window trends vary across different temporal windows. We aim
to use the findings from this method to understand the possibilities of model-
ing CLI for geographic areas in which data collection is sparse or non-existent.
Furthermore, results from our experiments can potentially guide public health
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policies for COVID-19. Understanding how the disease is progressing can help
the policymakers introduce non-pharmaceutical interventions (NPIs) and also
help them understand how to distribute critical resources (medicines, doctors,
healthcare workers, transportation, and more). This could now be done based
on the insights provided by our models, instead of relying completely on clini-
cal testing data. Prediction of outbreaks using self-reported symptoms can also
help reduce the load on testing resources. Similar self reported data and survey
data have been used by (Rodriguez, Muralidhar,xet al., 2020; Rodriguez, Tabas-
sum,xet al., 2020; Garcia-Agundezxet al., 2021) for understanding the pandemic
and drawing actionable insights.

2 Datasets

The CMU Symptom Survey aggregates the results of a survey run by CMU
(Delphixgroup, 2020) that was distributed across the US to approx 70k random
Facebook users daily. It gives a set of indicators that can inform our reasoning
about the pandemic. The indicators include:

– Symptoms related indicators like the percentage of respondents reporting
fever and the percentage of respondents reporting sore throat.

– Pre-existing medical condition related indicators like the percentage of re-
spondents having diabetes and the percentage of respondents having Au-
toimmune Disorder.

– Behavior related indicators like the percentage of respondents who avoid
contact with others most of the time and the percentage of respondents who
worked outside home.

The data set has a total of 104 columns (in October 2020), including weighted
(adjusted for sampling bias), unweighted signals, and demographic information
(age, gender, etc.) at county and state level. In this study, we use the state level
data from Apr. 4, 2020 to Sep. 11, 2020, which is henceforth referred to as the
CMU dataset in the paper.

The UMD Global Symptom Survey aggregates the results of a survey
conducted by UMD through Facebook (Fanxet al., 2020). The survey is avail-
able in 56 languages. A representative sample of Facebook users were invited
on a daily basis to report on topics including symptoms and social distancing
behavior. Facebook provides weights to reduce non-response and coverage bias.
Country and region-level statistics are published daily via the public API and
dashboards, and micro-data is available for researchers via data use agreements.
Over half a million responses were collected daily. We use the data of 968 regions,
available from May 1 to September 11, 2020. There are 49 (in October 2020)
unweighted signals, as well as their weighted forms (adjusted for sampling bias).

The Oxford COVID-19 Government Response Tracker (OxCGRT)
(Halexet al., 2020) contains government COVID-19 policy data as a numeri-
cal scale value representing the extent of government action. OxCGRT collects
publicly available information on 20 indicators of government response. This
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information was collected by a team of over 200 volunteers from the Oxford
community and was updated continuously. The data set also includes statistics
on the number of reported Covid-19 cases and deaths in each country, which
were taken from the JHU CSSE (Dong, Du,x& Gardner, 2020) data repository
for all countries and the US.

The Prevalence of Self-Reported Obesity by State and Territory,
BRFSS, 2019 - CDC (CDC, 2020) is a dataset published by CDC containing
the aggregated self-reported obesity values. The data are at the state level and
contain the obesity values and confidence intervals (95%). This dataset contains
other information like race, ethnicity, and food habits that can be used for further
analysis.

3 Methods and Experiments

Different methods and strategies have been used to analyze the
data. Our code used in the analysis is publicly available at
https://github.com/PrivateKit/CovidSymptomChallenge.

3.1 Correlation Studies

Correlations between features of the datasets provide crucial information about
the features and the degree of influence they have over the target value. We con-
ducted correlation analysis on different subgroups like symptomatic and asymp-
tomatic subjects, and varying demographic regions in the CMU dataset to dis-
cover relationships among the signals and with the target variable. We also
investigated the significance of obesity and population density on the suscepti-
bility to COVID-19 at the state level (CDC, 2020). Refer to the supplementary
materials for more information.

3.2 Feature Pruning

We first dropped demographic features such as date, gender, and age. Next, we
dropped the unweighted features because their weighted counterparts were used.
We also dropped features including the percentage of people who tested nega-
tive, the weighted percentage of people who tested positive because they were
directly related to testing and would make the prediction trivial. Furthermore,
we dropped the derived features such as the estimated percentage of people with
influenza-like illness because they were not directly reported by the respondents.
Finally, we dropped some features with aggregated information such as the av-
erage number of people in respondent’s household who have Covid Like Illness.
After the entire process, we selected 36 features. The selected feature list is
provided in the supplementary materials.
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3.3 Outbreak Prediction

We predicted the percentage of the population that tested positive at the state
level from the CMU dataset. We ranked these 36 signals using f regression
(“sklearn f regression”, 2007-2020) (f statistic of the correlation to the target
variable) and predicted the target variable using the top n ranked features.
We experimented with the top n features value from 1 to 36 for various de-
mographic groups. We trained linear regression (Galton, 1886), decision tree
(Quinlan, 1986), and gradient boosting (Friedman, 2001) models. All the mod-
els were implemented using scikit-learn (Pedregosaxet al., 2011). We used 80%
of the data for training and the remaining 20% of the data for testing. The data
were split randomly.

3.4 Time Series Analysis

We predicted the percentage of people that tested positive using the CMU
dataset and the percentage of people with CLI with the UMD dataset. We in-
dependently used the top ”n” features (according to their ranking obtained in
outbreak prediction and empirical evidence combined with human experts rank-
ing) from the CMU (36) and UMD (49) datasets for multivariate multi-step time
series forecasting. Given the data spread across different spatial windows (ge-
ographies) at the state level, we employed an agglomerative clustering method
independently on symptoms and behavioral/external patterns, and sample loca-
tions that were not in the same cluster for our analysis. Using the Augmented
Dickey-Fuller test (Cheungx& Lai, 1995), we found the time series samples for
these spatial windows to be stationary. Furthermore, we bucketed the data based
on the age and gender of the respondents, to provide granular insights on the
model performance on various demographics. With a total of 12 demographic
buckets [(age, gender) pairs], we used a vector autoregressive (VAR) (Holden,
1995) model and an LSTM (Gers, Schmidhuber,x& Cummins, 1999) model for
the experiments. Furthermore, we qualitatively evaluated the impact of govern-
ment policies, e.g., curfew, on the spread of the virus. We used 80% of the data
for training and the remaining 20% of the data for testing.

4 Results and Discussion

4.1 Correlation Studies

The state level analysis revealed a moderate positive correlation, r= 0.24 (p-value
< 0.001), between the percentage of people tested positive and the statewide obe-
sity level. Here, the obesity is defined as BMI> 30.0 (NIH, 2020). The results
are consistent with prior clinical studies like (Chanxet al., 2020) and indicate
that further research is required to investigate if the lack of certain nutrients
like Vitamin B, Zinc, Iron, or having a BMI> 30.0 could make an individual
more susceptible to COVID-19. Figure 1 shows the correlations among multiple
self-reported symptoms and the symptoms with significant positive correlations
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Figure 1. Correlation among self-reported symptoms and the percent of population
tested COVID positive.

are highlighted. This clearly reveals that anosmia, ageusia and fever are rela-
tively strong indicators of COVID-19. From Figure 2, we see that contact with
a COVID-19 positive individual is strongly correlated with testing COVID-19
positive. Conversely, the percentage of population who avoid outside contact and
the percentage of population testing positive for COVID-19 have a negative cor-
relation. We also found a moderate positive correlation between the population
density and the percentage of population reporting positive COVID-19, which
indicates easier transmission of the virus in a congested environment. These ob-
servations reaffirm the highly contagious nature of the virus and the need for
social distancing.

The results motivated us to estimate the percentage of people who tested
COVID-19 positive based on the percentage of people who had a direct contact
with anyone who recently tested positive. In doing so, we achieve a mean relative
error (MRE) of 2.33% and a mean absolute error (MAE) of 0.03.

Here, MAE is the absolute value of the difference between the predicted value
and the actual value, averaged over all data points:

MAE =
1

n

n∑
i=1

|yi − xi|,
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Figure 2. Correlations between the percent of people having contact with someone
having CLI and the percent of people who tested positive. Here, the attribute (1) =
percentage of people who had contact with someone having COVID-19, (2) = percent-
age of people tested positive, (3) = percentage of people who avoided contact all/most
of the time.

where n is the total data instances, yi is the predicted value and xi is the actual
value. Relative error is the absolute difference between the predicted value and
the actual value, divided by the actual value. MAE is the relative error averaged
over all the data points:

MRE =
1

n

n∑
i=1

∣∣∣∣yi − xi

xi + 1

∣∣∣∣ ,
where 1 is added in the denominator to avoid division by 0.

We found that a low MAE value can be misleading in the case of predicting
the spread of the virus. The MAE for the outbreak prediction was low and had a
small range (1-1.4) but more than 75% of the target lied between 0-2.6, meaning
only a small percentage of the entire population had COVID-19 (if 1% of the
entire population was affected and an MAE of 1 indicates the predicted cases
could double the actual cases). MRE accounts for even minute changes (errors)
in the prediction. Hence, it is a better metric to judge a system.

4.2 Policies vs CLI/Community Sick Impacts

The impacts of different non-pharmaceutical interventions (NPIs) could be an-
alyzed by combining the CMU, UMD, and Oxford data. A particular analysis
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from that is reported here, where we noticed that lifting of stay at home restric-
tions resulted in a sudden spike in the number of cases. This is visualized in
figure 3.

Figure 3. Policy impacts: When Stay at home restrictions were stronger, even with
higher testing rates, the percentage of population with CLI (pct cli ew) had a down-
ward trend.

4.3 Outbreak prediction on CMU Dataset

Gradient boosting performed the best and considerably better than the next best
algorithm in terms of the error metrics for every demographic group. Hence, only
the results for Gradient Boosting are presented. Table 1 shows the best accuracy
achieved per dataset. For every dataset, the best ”n” number of features is about
30. We achieved an MRE of 60.40% for the entire dataset. The performance
was better on the female-only data when compared to the male-only data. The
performance was slightly better on 55+ age data than other age groups. This
can also be observed from figure 4.

4.3.1 Top Features Except for minor reordering, the top 5 features were
CLI in community, loss of smell, CLI in house hold (HH), fever in HH, and
fever across every data split. The top 6 to 10 features per data split are given in
figure 5. We can see that ’worked outside home’ and ’avoid contact most time’
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Table 1. Results of gradient boosting model for the prediction of the percentage of
population tested positive across demographics. The mean relative error (MRE) and
mean absolute error (MAE) are average of 20 runs. The 95% confidence interval (CI)
for MRE is calculated on 20 runs (data were shuffled randomly each time).

Demographic best n MAE MRE CI

Entire 35 1.14 60.40 (60.12, 60.67)
Male 34 1.38 78.14 (77.67, 78.62)
Female 36 1.10 56.89 (56.48, 57.30)
Age 18-34 30 1.23 66.35 (65.59, 67.12)
Age 35-54 35 1.29 67.59 (67.13, 68.04)
Age 55+ 33 1.20 66.40 (65.86, 66.94)

Figure 4. Error vs. the number of top features used for the gradient boosting model.
Errors vary across demographics and generally decrease with the increase of the number
of features (n). The decrease is not considerable after n = 20.

are useful features for male, female, and 55+ age groups. Figure 4 shows MRE
vs. the number of features selected for different data splits. Overall, the error
decreased as we added more features. However, the decrease in error was not
considerable when we went beyond 20 features (< 1%).

4.4 Time Series Analysis

As seen in Tables 2 and 3, we were able to forecast the PCT CLI with an MRE of
15.31% using just 23 features from the UMD dataset for Lombardia and with an
MRE of 42.72% for Northern Ireland. The 23 features (provided in the supple-
mentary materials) were selected with the help of human experts and empirical
analysis. We can see that VAR performed better than LSTM on average. This
can be explained by the dearth of data available. Furthermore, we can see that
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sore throat in hh
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Figure 5. After the top 5 predictive features (which were roughly identical), there
are considerable differences between the most predictive features segmented across
demographics. For example, for the age 34-55 group, ’sore throat in hh (household)’
was the sixth most predictive feature but it is not even in the top 10 most predictive
features for the 55+ age group.

the outbreak forecasting for New York achieved 11.28% MRE, making use of only
10 features (these features were selected based on the outbreak prediction results
and further empirically identified as well). This might be caused by an inherent
bias in the sampling strategy or participant responses. For example, the high
correlation noted between anosmia and COVID-19 prevalence suggested several
probable causes of confounding relationships between the two. This could also
occur if both symptoms were specific and sensitive for COVID-19 infection.

4.5 Symptoms vs CLI overlap

The percentage of population with symptoms like cough, fever, and runny nose
was much higher than the percentage of people who suffered from CLI or the
percentage of people who were sick in the community. Only 4% of the people in
the UMD dataset who reported having CLI did not suffer from chest pain and
nausea.
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Table 2. The errors of forecasting the outbreak of COVID-19 (the percentage of people
who tested positive) for the next 30 days using VAR and LSTM.

Location MRE MAE

VAR

New York 11.28, 95% CI [10.9, 11.6] 0.15
California 13.48, 95% CI [13.4, 13.5] 0.23
Florida 17.49, 95% CI [17.5, 17.5] 0.38
New Jersey 17.93, 95% CI [17.9, 18] 0.26

LSTM

New York 23.61, 95% CI [23.6, 23.7] 0.36
California 45.06, 95% CI [45, 45.2] 0.91
Florida 64.98, 95% CI [64.8, 65.1] 1.51
New Jersey 15.78, 95% CI [15.7, 15.9] 0.26

Table 3. Results of forecasting the outbreak of COVID-19 (the percentage of people
with COVID-19 like illness in the population - PCT CLI) for the next 30 days using
the VAR and LSTM models.

Location MRE MAE

VAR

Tokyo 17.77, 95% CI [17.7, 17.8] 0.28
British Columbia 21.35, 95% CI [21.3, 21.4] 0.34
Northern Ireland 42.72, 95% CI [42.7, 42.8] 0.87
Lombardia 15.31, 95% CI [15.3, 15.4] 0.22

LSTM

Tokyo 30.00, 95% CI [29.9, 30.1] 0.53
British Columbia 31.11, 95% CI [30.9, 31.3] 0.56
Northern Ireland 42.46, 95% CI [42.1, 42.9] 1.21
Lombardia 16.11, 95% CI [16, 16.2] 0.21

4.6 Ablation Studies

We performed ablation studies to verify and investigate the relative importance
of the features that were selected using f regression feature ranking algorithm
(“sklearn f regression”, 2007-2020). In the following experiments, the top N = 10
features obtained from the f regression algorithm are considered as the subset
for evaluation.

4.6.1 All-but-one experiment In this experiment, the target variable which
is the percentage of people affected by COVID-19 was estimated by considering
N − 1 features from a given set of top N features by dropping 1 feature at a
time in every iteration in descending order. The results were visualized in figure
6 from which it is clear that there was a considerable increased error when the
most significant feature was dropped and the loss in performance was not as
drastic when any other feature was dropped. This reaffirms our feature selection
method.
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Figure 6. Results of all-but-one experiment (MRE).

4.6.2 Cumulative Feature Dropping In this experiment, we estimated
the target variable based on the top N=10 features and then carried out the
experiment with N−i features in every iteration where i was the iteration count.
The features were dropped in descending order. Figure 7 shows the results. The
change in slope from the start to the end of the graph shows that the most
important feature had a huge significance of the performance. This observation
reinforces the inference of the all-but-one experiment and validates our feature
selection algorithm.
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Figure 7. Results of cumulative feature dropping.

5 Conclusion And Future Work

In this work, we analyzed the benefits of the COVID-19 self-reported symptoms
presented in the CMU, UMD, and Oxford datasets. We conducted correlation
analysis, outbreak prediction, and time series prediction of the percentage of re-
spondents with positive COVID-19 tests and the percentage of respondents who
show COVID-like illness. By clustering datasets across different demographics,
we revealed micro and macro level insights into the relationship between symp-
toms and outbreaks of COVID-19. These insights might form the basis for future
analysis of the epidemiology and manifestations of COVID-19 in different patient
populations. Our correlation and prediction studies identified a small subset of
features that can predict measures of COVID-19 prevalence to a high degree
of accuracy. Using this, more efficient surveys can be designed to measure only
the most relevant features to predict COVID-19 outbreaks. Shorter surveys will
increase the likelihood of respondent participation and decrease the chances that
respondents provide false (or incorrect) information. We believe that our analysis
will be valuable in shaping health policy and in COVID-19 outbreak predictions
for areas with low levels of testing by providing prediction models that rely on
self-reported symptom data. As shown from our results, the predictions from
our models could be reliably used by health officials and policymakers, in order
to prioritize resources. Furthermore, having crowd-sourced information as the
base helps scale this method at a much higher pace, if and when required in the
future, e.g., due to the advent of a new virus or a strain.



COVID-19 Outbreak Prediction 167

In the future, we plan to use advanced deep learning models for predictions.
Furthermore, given the promise shown by population level symptoms data, we
find more relevant and timely problems that can be solved with individual data.
Machine learning systems based on data from mobile/wearable devices can be
built to understand users’ vitals, sleep behavior, and so on. Having the data
shared at an individual level can augment the participatory surveillance dataset
and thereby the predictions made. This can be achieved without compromising
the privacy of individuals. We also plan to compare the reliability of such sur-
vey methods with actual number of cases in the corresponding regions and its
generalizability across populations.
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