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Abstract. Latent growth curve models (LGCMs) are becoming
increasingly important among growth models because they can
effectively capture individuals’ latent growth trajectories and also explain
the factors that influence such growth by analyzing the repeatedly
measured manifest variables. However, with the increase in complexity of
LGCMs, there is an increase in issues on model estimation. This research
proposes a Bayesian approach to LGCMs to address the perennial
problem of almost all longitudinal research, namely, missing data. First,
different missingness models are formulated. We focus on non-ignorable
missingness in this article. Specifically, these models include the latent
intercept dependent missingness, the latent slope dependent missingness,
and the potential outcome dependent missingness. To implement the
model estimation, this study proposes a full Bayesian approach through
data augmentation algorithm and Gibbs sampling procedure. Simulation
studies are conducted and results show that the proposed method
accurately recover model parameters and the mis-specified missingness
may result in severely misleading conclusions. Finally, the implications
of the approach and future research directions are discussed.
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1 Introduction

In social and behavioral sciences, there has been great interest in the analysis
of change (e.g., Collins, 1991; Lu, Zhang, & Lubke, 2010; Singer & Willett,
2003). Growth modeling is designed to provide direct information of growth by
measuring the variables of interest on the same participants repeatedly through
time (e.g., Demidenko, 2004; Fitzmaurice, Davidian, Verbeke, & Molenberghs,
2008; Fitzmaurice, Laird, & Ware, 2004; Hedeker & Gibbons, 2006; Singer
& Willett, 2003). Among the most popular growth models, latent growth
curve models (LGCMs) are becoming increasingly important because they can
effectively capture individuals’ latent growth trajectories and also explain the
latent factors that influence such growth by analyzing the repeatedly measured
manifest variables (e.g., Baltes & Nesselroade, 1979). Manifest variables are
evident in the data, such as observed scores; latent variables cannot be measured
directly and are essentially hidden in the data, such as the latent initial levels and
latent growth rates (Singer & Willett, 2003). We use the term “latent” because
these variables are not directly observable but rather are assumed to be inferred,
although they may be closely related to observed scores. For example, the latent
intercept (i.e., the latent initial level) may be related to the test score at the first
occasion, the prior knowledge of a course (such as mathematical knowledge), or
other similar variables. The latent slope (i.e., the latent growth rate) may be
related to the participant’s learning ability, the attitude toward the course, the
instructor’s teaching methods, or other similar types of variables.

However, with an increase in complexity of LGCMs, comes an increase in
difficulties estimating such models. First, missing data are almost inevitable with
longitudinal data (e.g., Jelicic, Phelps, & Lerner, 2009; Little & Rubin, 2002).
Second, conventional likelihood estimation procedures might fail for complex
models with complicated data structures.

1.1 Missing Data

As LGCMs involve data collection on the same participants through multiple
waves of surveys, tests, or questionnaires, missing data are almost inevitable.
Research participants may drop out of a study, or some students may miss a test
due to absence or fatigue (e.g., Little & Rubin, 2002; Schafer, 1997). Missing data
can be investigated from their mechanisms, or why missing data occur. Little and
Rubin (2002) distinguished ignorable missingness mechanism and non-ignorable
missingness mechanism. For ignorable missingness mechanism, estimates are
usually asymptotically consistent when the missingness is ignored (Little &
Rubin, 2002), because the parameters that govern the missing process either
are distinct from the parameters that govern the model outcomes or depend on
the observed variables in the model. The non-ignorable missingness mechanism
is also referred to as missing not at random (MNAR), in which the missing data
probability depends either on unobserved outcomes, or on latent variables that
cannot be fully measured by the observed data, in other words, latent variables
that depend on the missing values.
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With the appearance of missing data comes the challenge in estimating
growth model parameters. To address the challenge, statisticians have developed
different approaches and models. Although there are a large amount of literature
to address this problem in applied behavioral sciences (e.g., Acock, 2005; Schafer
& Graham, 2002; Schlomer, Bauman, & Card, 2010), especially in longitudinal
studies (e.g., Jelicic et al., 2009; Roth, 1994), the majority of the literature
is on ignorable missingness. This is mainly because (1) analysis models or
techniques for non-ignorable missing data are traditionally difficult to implement
and not yet easy to use (e.g., Baraldi & Enders, 2010), and (2) missingness
mechanisms are not testable (e.g., Little & Rubin, 2002). At the same time,
however, non-ignorable missingness analysis is a crucial and a serious concern in
applied research areas, in which participants may be dropping out for reasons
directly related to the response being measured (e.g., Baraldi & Enders, 2010;
Enders, 2011b; Hedeker & Gibbons, 1997). Not attending to the non-ignorable
missingness may result in severely biased statistical estimates, standard errors,
and associated confidence intervals, and thus poses substantial risk of leading
researchers to incorrect conclusions (e.g., Little & Rubin, 2002; Schafer, 1997;
Zhang & Wang, 2012).

In a study of latent growth models, Lu, Zhang, and Lubke (2011) investigated
non-ignorable missingness in mixture models. However, the missingness in that
study was only allowed to depend on latent class membership. In practice,
even within one population, the missingness may depend on many other latent
variables, such as latent initial levels and latent growth rates. When observed
data are not completely informative about these latent variables, the missingness
is non-ignorable. Furthermore, Lu et al. (2011) did not examine how to identify
the missingness mechanisms. Accordingly, this study extends previous research
to more general non-ignorable missingness and also investigates the influences
of different types of non-ignorable missingness on model estimation.

1.2 Bayesian Approach

To implement the model estimation, we propose a full Bayesian approach.
Traditionally, maximum likelihood methods have been widely used in most
studies for estimating parameters of models in the presence of missing data (e.g.,
Enders, 2011a; Muthén, Asparouhov, Hunter, & Leuchter, 2011), and statistical
inferences have been carried out using conventional likelihood procedures (e.g.,
Yuan & Lu, 2008). Recently, multiple imputation (MI) methods have been
proposed as an alternative approach (e.g., Enders, 2011a; Muthén et al., 2011).
MI is a Monte Carlo technique that replaces the missing values with multiple
simulated values to generate multiple complete datasets. Each of these simulated
datasets is then analyzed using methods that do not account for missingness,
that is, using standard analytical methods. Results are then combined to produce
estimates and confidence intervals that incorporate the uncertainty due to
the missing-data (Enders, 2011a; Rubin, 1987; Schafer, 1997). Both ML and
MI estimation methods typically assume that missing data mechanisms are
MCAR or MAR. Further, using conventional estimation procedures may fail
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or may provide biased estimates (Yuan & Zhang, 2012) when estimating model
parameters in complex models with complicated data structures such as GMMs
with missing data and outliers. In addition, MI requires data to be imputed under
a particular model (e.g., Allison, 2002; Newman, 2003). And literature also shows
that multiple imputation is inappropriate as a general purpose methodology
for complex problems or large datasets (e.g., Fay, 1992). When missingness is
MNAR, most work augments the basic analysis using with a model that explains
the probability of missing data (e.g., Enders, 2011a; Muthén et al., 2011).

In this article, a full Bayesian estimate approach (e.g., Lee, 2007; Muthén
& Asparouhov, 2012) is proposed. There are several advantages. First, this
approach involves Gibbs sampling methods (Geman & Geman, 1984). Gibbs
sampling is especially useful when the joint distribution is complex or unknown
but the conditional distribution of each variable is available. The sequence of
samples constructs a Markov chain that can be shown to be ergodic (Geman
& Geman, 1984). That is, once convergence is obtained, the samples can
be assumed to be independent draws from the stationary distribution. Thus,
after convergence the generated value is actually from the joint distribution
of all parameters. Each variable from the Markov chain has also been shown
to converge to the marginal distribution of that variable (Robert & Casella,
2004). Additional advantages of Bayesian methods include their intuitive
interpretations of statistical results, their flexibility in incorporating prior
information about how data behave in similar contexts and findings from
experimental research, their capacity for dealing with small sample sizes (such as
occur with special populations), and their flexibility in the analysis of complex
statistical models with complicated data structure (e.g., Dunson, 2000; Scheines,
Hoijtink, & Boomsma, 1999).

1.3 Goals and Structure

The goals of the paper are to propose latent growth curve models with
non-ignorable missingness and to evaluate the performance of Bayesian methods
to recover model parameters. The rest of the article consists of four sections.
Section 2 presents and formulates three non-ignorable missingness selection
models. Section 3 presents a full Bayesian method to estimate the latent growth
models through the data augmentation and Gibbs sampling algorithms. Section 4
conducts a simulation study. Estimates from models with different non-ignorable
missingness and different sample sizes are summarized, analyzed, and compared.
Conclusions based on the simulation study are drawn. Section 5 discusses the
implications and future directions of this study. Finally, the appendix presents
technical details.

2 Non-ignorable Missingness in Latent Growth Models

In this section, we model the non-ignorable missingness in growth models. Before
we introduce the three selection models, we first review the latent growth curve
models (LGCMs).
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2.1 Latent Growth Curve Models (LGCMs)

The latent growth curve models (LGCMs) can be expressed by a regression
equation with latent variables being regressors. Specifically, for a longitudinal
study with N subjects and T measurement time points, let yi = (yi1, yi2, ..., yiT )′

be a T × 1 random vector, where yit stands for the outcome or observation of
individual i at occasion t (i = 1, 2, ..., N ; t = 1, 2, ..., T ), and let ηi be a q × 1
random vector containing q continuous latent variables. A latent growth curve
model for the outcome yi related to the latent ηi can be written as

yi = Ληi + ei (1)

ηi = β + ξi, (2)

where Λ is a T × q matrix consisting of factor loadings, ei is a T × 1 vector of
residuals or measurement errors that are assumed to follow multivariate normal
distributions, i.e., ei ∼MNT (0,Θ) 1, and ξi is a q×1 vector that is assumed to
follow a multivariate distribution, i.e., ξi ∼MNq(0,Ψ). In LGCMs, β is called
fixed effects and ξi is called random effects (e.g., Fitzmaurice et al., 2004; Hedges,
1994; Luke, 2004; Singer & Willett, 2003). The vectors β, ηi, and the matrix
Λ determine the growth trajectory of the model. For instance, when q = 2,
β = (I, S)′, ηi = (Ii, Si)

′, and Λ is a T ×2 matrix containing the first column of
1s and the second column of (0, 1, ..., T −1). The corresponding model represents
a linear growth model in which I is the latent population intercept (or latent
random initial level), S is the latent population slope, Ii is individual i’s latent
random intercept and Si is individual i’s latent random slope. Furthermore, when
q = 3, β = (I, S,Q)′, ηi = (Ii, Si, Qi)

′, and Λ is a T × 3 matrix containing the
first column of 1s, the second column of (0, 1, ..., T − 1), and the third column
of (0, 1, ..., (T − 1)2). The corresponding model represents a quadratic growth
curve model with Q and Qi being latent quadratic coefficients for population
and individual i, respectively.

2.2 Selection Models for Non-ignorable Missingness

To address the non-ignorable missingness, there are two general approaches,
pattern-mixture models (Hedeker & Gibbons, 1997; Little & Rubin, 1987) and
selection models (Glynn, Laird, & Rubin, 1986; Little, 1993, 1995). In both
cases, the statistical analysis requires joint modelling of dependent variable and
missing data processes. In this research, selection models are used, mainly for
two reasons. First, substantively, it seems more natural to consider the behavior
of the response variable in the full target population of interests, rather than
in the sub-populations defined by missing data patterns (e.g., Fitzmaurice et
al., 2008). Second, the selection model formulation leads directly to the joint
distribution of both dependent variables and the missingness (e.g., Fitzmaurice

1 Throughout the article, MNn(·) denotes a n-dimensional multivariate normal
distribution, and Mtn(·) denotes a n-dimensional multivariate t distribution.
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et al., 2008) as follows,

f(yi,mi|ν,φ,xi) = f(yi|ν,xi) f(mi|yi,ν,φ,xi)

where f(.) is a density function, xi is a vector of covariates for individual i,
yi is a vector of individual i’s outcome scores, Θ = (ν,φ) are all parameters
in the model, in which ν are parameters for the growth model and φ are
parameters for the missingness, and mi is a vector mi = (mi1,mi2, ...,miT )′

that indicates the missingness status for yi. Specifically, if yi is missing at time
point t, then mit = 1; otherwise, mit = 0. Here, we assume the missingness
is conditionally independent (e.g., Dawid, 1979), which means across different
occasions the conditional distributions of missingness are independent with
each other. Let τit = f(mit = 1) be the probability that yit is missing, then
mit follows a Bernoulli distribution of τit, and the density function of mit is
f(mit) = τmit

it (1 − τit)1−mit . For different non-ignorable missingness patterns,
the expressions of τit are different. Lu et al. (2011) investigated the non-ignorable
missingness in mixture models. The τit in that article is a function of latent class
membership, and thus the missingness is Latent Class Dependent (LCD).

However, LCD was proposed in the framework of mixture models. Within
each latent population, there is no class membership indicator. Consequently, the
missingness is ignorable. In this article, we consider more complex non-ignorable
missingness mechanisms within a population. In general, we assume Li is a vector
of latent variables that depend on the missing values. A general class of selection
models for dealing with non-ignorable missing data in latent growth modelling
can be formulated as

f(yi,mi|β, ξi,Li,γt,xi) = f(ηi|β, ξi)f(yi|ηi)Φ(ω′i γt)
mit [1− Φ(ω′i γt)]

1−mit

= f(ηi|β, ξi)f(yi|ηi)Φ(γ0t + LiγLt + x′iγxt)
mit

×[1− Φ(γ0t + LiγLt + x′iγxt)]
1−mit (3)

where xi is an r-dimensional vector, ωi = (1,L′i,x
′
i)
′ and γt = (γ0t,γ

′
Lt,γ

′
xt)
′.

The missingness is non-ignorable because it depends on the latent variables Li
in the model and the observed data are not completely informative about these
latent variables. Note that the vector γLt here should be non-zero. Otherwise,
the missingness becomes ignorable.

Specific sub-models under different situations can be derived from this general
model. For example, missingness may be related to latent intercepts, latent
growth rates, or potential outcomes. To show different types of non-ignorable
missingness, we draw the path diagrams, as shown in Figures 1, 2, and 3, to
illustrate the sub-models. These sub-models are based on three types of latent
variables on which the missingness might depend. In these path diagrams, a
square/rectangle indicates an observed variable, a circle/oval means a latent
variable, a triangle represents a constant, and arrows show the relationship
among them. yt is the outcome at time t, which is influenced by latent effects
such as I, S, and ηq. As the value of yt might be missing, we use both circle and
square in the path diagram. If yt is missing, then the potential outcome cannot
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be observed and the corresponding missingness indicator mt becomes 1. The
dashed lines between yt and mt show the 1-1 relationship. In these sub-models,
the value of mt depends on the observed covariate xr and some latent variables.
The details of these three sub-models are described as follows.

2.2.1 Latent Intercept Dependent (LID) Missingness (Figure 1). It
illustrates the situation where the missingness depends on individual’s latent
intercept, Ii. For example, a student’s latent initial ability level of the knowledge
of a course influences the likelihood of that participant dropping out of or staying
in that course. If the latent initial ability of a course is not high, a student may
choose to drop that course or even drop out a school. In the case of LID, the Li
in Equation (3) is simplified to a univariate Ii. Suppose that the missingness is
also related to some observed covariates xi, such as parents’ education or family
income, then τIit is expressed as a probit link function of Ii and xi

τIit = Φ(γ0t + IiγIt + x′iγxt) = Φ(ω′Ii γIt), (4)

where ωIi = (1, Ii,x
′
i)
′ and γIt = (γ0t, γIt,γ

′
xt)
′.
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Figure 1. Path diagram of a latent growth model with latent intercept dependent
missingness (LID) where f(mt) depends on covariates xrs and latent intercept I.

2.2.2 Latent Slope Dependent (LSD) Missingness (Figure 2). It
describes the situation where the missingness depends on the latent slope, Si. For
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example, a student’s latent rate of change in a course influences the likelihood
that the participant misses a test in the future. This might be the case, if the
student didn’t see any improvement over time, at which point he/she might
choose to drop out. In the case of LSD, the Li in Equation (3) becomes a
univariate Si. Together with some other observed covariates xi, for example,
parents’ education or family income, the missing data rate τit can be expressed
as a probit link function of Si and xi,

τSit = Φ(γ0t + SiγSt + x′iγxt) = Φ(ω′Si γSt), (5)

with ωSi = (1, Si,x
′
i)
′ and γSt = (γ0t, γSt,γ

′
xt)
′.
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Figure 2. Path diagram of a latent growth model with latent slope dependent
missingness (LSD) where f(mt) depends on covariates xrs and latent slope S.

2.2.3 Latent Outcome Dependent (LOD) Missingness (Figure 3). It
assumes that the missingness depends on potential outcomes yit. For example, a
student who feels not doing well on a test may be more likely to quit taking the
rest of the test. As a result, the missing score is due to the perceived potential
outcome of the test. In this case, the Li in Equation (3) is the potential outcome
yit. With some covariates xi, we express τit as a probit link function as follows.

τyit = Φ(γ0t + yitγyt + x′iγxt) = Φ(ω′yit γyt), (6)

with ωyit = (1, yit,x
′
i)
′ and γyt = (γ0t, γyt,γ

′
xt)
′.
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Figure 3. Path diagram of a latent growth model with latent outcome dependent
missingness (LOD) where f(mt) depends on covariates xrs and potential outcome y.

3 Bayesian Estimation

In this article, a full Bayesian estimation approach is used to estimate growth
models. The algorithm is described as follows. First, model related latent
variables are added via the data augmentation method (Tanner & Wong, 1987).
By including auxiliary variables, the likelihood function for each model is
obtained. Second, proper priors are adopted. Third, with the likelihood function
and the priors, based on the Bayes’ Theorem, the posterior distribution of
the unknown parameters is readily available. We obtain conditional posterior
distributions instead of the joint posterior because the integrations of marginal
posterior distributions of the parameters are usually hard to obtain explicitly for
high-dimensional data. Fourth, with conditional posterior distributions, Markov
chains are generated for the unknown model parameters by implementing a
Gibbs sampling algorithm (Casella & George, 1992; Geman & Geman, 1984).
Finally, statistical inference is conducted based on converged Markov chains.

3.1 Data Augmentation and Likelihood Functions

In order to construct the likelihood function explicitly, we use the data
augmentation algorithm (Tanner & Wong, 1987). The observed outcomes yobsi
can be augmented with the missing values ymisi such that yi = (yobsi ,ymisi )′ for
individual i. Also, the missing data indicator variable mi is added to models.
Then the joint likelihood function of the selection model for the ith individual
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can be expressed as Li(ηi,yi,mi) = [f(ηi) f(yi|ηi)] f(mi|yi,ηi,xi). For the
whole sample, the likelihood function is specifically expressed as

L(y,η,m) ∝
N∏
i=1

{
|Ψ|−1/2 exp

[
−1

2
(ηi − β)′Ψ−1(ηi − β)

]
× |φ|−T/2 exp

[
− 1

2φ
(yi −Ληi)

′(yi −Ληi)

]
×

T∏
t=1

[
τmit
it (1− τit)1−mit

]}
,

(7)

where τit is defined by Equation (4) for the LID missingness, (5) for the LSD
missingness, and (6) for the LOD missingness.

3.2 Prior and Posterior Distributions

The commonly used proper priors (e.g., Lee, 2007) are adopted in the
study. Specifically, (1) an inverse Gamma distribution prior is used for φ ∼
IG(v0/2, s0/2) where v0 and s0 are given hyper-parameters. The density function
of an inverse Gamma distribution is f(φ) ∝ φ−(v0/2)−1 exp(−s0/(2φ)). (2)
An inverse Wishart distribution prior is used for Ψ. With hyper-parameters
m0 and V0, Ψ ∼ IW (m0,V0), where m0 is a scalar and V0 is a q × q
matrix. Its density function is f(Ψ) ∝ |Ψ|−(m0+q+1)/2 exp[−tr(V0Ψ

−1)/2]. (3)
For β a multivariate normal prior is used, and β ∼ MNq(β0,Σ0) where the
hyper-parameter β0 is a q-dimensional vector and Σ0 is a q× q matrix. (4) The
prior for γt (t = 1, 2, . . . , T ) is chosen to be a multivariate normal distribution
γt ∼ MN(2+r)(γt0,Dt0), where γt0 is a (2 + r)-dimensional vector, Dt0 is a
(2 + r)× (2 + r) matrix, and both are pre-determined hyper-parameters.

After constructing the likelihood function and assigning the priors, the joint
posterior distribution for unknown parameters is readily available. Considering
the high-dimensional integration for marginal distributions of parameters, the
conditional distribution for each parameter is obtained instead. The derived
conditional posteriors are provided in Equations (8) - (11) in the appendix. In
addition, the conditional posteriors for the latent variable ηi and the augmented
missing data ymisi (i = 1, 2, ..., N) are also provided by Equations (12) and (13),
respectively, in the appendix.

3.3 Gibbs Sampling

After obtaining the conditional posteriors, the Markov chain for each model
parameter is generated by implementing a Gibbs sampling algorithm (Casella &
George, 1992; Geman & Geman, 1984). Specifically, the following algorithm is
used in the research.

1. Start with a set of initial values for model parameters φ(0), Ψ(0), β(0), γ(0),
latent variable η(0), and missing values ymis(0).
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2. At the sth iteration, the following parameters are generated: φ(s), Ψ(s), β(s),
γ(s), η(s), and ymis(s). To generate φ(s+1), Ψ(s+1), β(s+1), γ(s+1), η(s+1),
and ymis(s+1), the following procedure is implemented:
(a) Generate φ(s+1) from the distribution in Equation (8) in the appendix.
(b) Generate Ψ(s+1) from the inverse Wishart distribution in Equation (9) in

the appendix. iv. Generate β(s+1) from the multivariate normal distribution
in Equation (10) in the appendix.
(c) Generate γ(s+1) from the distribution in Equation (11) in the appendix.
(d) Generate η(s+1) from the multivariate normal distribution in Equation
(12) in the appendix.
(e) Generate ymis(s+1) from the normal distribution in Equation (13) in the
appendix.

3.4 Statistical Inference

After passing convergence tests, the generated Markov chains can be viewed
as from the joint and marginal distributions of all parameters. The statistical
inference can then be conducted based on the generated Markov chains.

Suppose θ is an unknown parameter. For different loss functions of θ, the
point estimates are different. For example, if a square loss function, LF = (θ −
θ̂)2, is used, then the posterior mean is the estimate of θ; but if an absolute loss

function, LF = |θ− θ̂|, is used, then its estimate is the posterior median. There
are other function forms, such as 0-1 loss function, but in this research we use
the square loss function.

Let Θ = (θ1, θ2, ..., θp)
′ denote a vector of all the unknown parameters

in the model. Then the converged Markov chains can be recorded as
Θ(s), s = 1, 2, . . . , S, and each parameter estimate θ̂j (j = 1, 2, ..., p) can

be calculated as θ̂j =
∑S
s=1 θ

(s)
j /S with standard error (SE) s.e.(θ̂j) =√∑S

s=1(θ
(s)
j − θ̂j)2/(S − 1). To get the credible intervals, both percentile

intervals and the highest posterior density intervals ?HPD, ¿Box1973 of the

Markov chains can be used. Percentile intervals are obtained by sorting θ
(s)
j .

HPD intervals may also be referred as minimum length confidence intervals for
a Bayesian posterior distribution, and for symmetric distributions HPD intervals
obtain equal tail area probabilities.

4 Simulation Studies

In this section, simulation studies are conducted to evaluate the performance of
the proposed models estimated by the Bayesian method.

4.1 Simulation Design

In the simulation, we focus on linear LGCMs to simplify the presentation. Higher
order LGCMs can be easily expanded by adding quadratic or higher order terms.
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First, four waves of complete LGCM data yi are generated based on
Equations (1) and (2). The random effects consist of the intercept Ii and the
slope Si, with V ar(Ii) = 1, V ar(Si) = 4, and Cov(Ii, Si) = 0. The fix-effects
are (I, S) = (1, 3). The measurement errors are assumed to follow a normal
distribution with mean 0 and standard deviation 1. In the simulation, we
also assume there is one covariate X generated from a normal distribution,
X ∼ N(1, sd = 0.2). Missing data are created based on different pre-designed
missingness rates. We assume the true missingness is LSD (also noted as the
XS missingness in this study because the missingness depends on the latent
individual slope S and covariate X). With LSD, the bigger the slope is, the more
the missing data. For the sake of simplicity in the simulation, the missingness
rate is set the same for every occasion. Specifically, we set the missingness
probit coefficients as γ0 = (−1,−1,−1,−1), γx = (−1.5,−1.5,−1.5,−1.5), and
γS = (0.5, 0.5, 0.5, 0.5). With the setting, missingness rates are generated based
on Equation (5). If a participant has a latent growth slope 3, with a covariate
value 1, his or her missingness rate at each wave is τ ≈ 16%; and if the slope
is 5, with the same covariate value, the missing rate increases to τ ≈ 50%; but
when the slope is 1, the missingness rate decreases to τ ≈ 2.3%.

Next, we fit data with LGCMs with different missingness. Specifically, the
model design with different missingness is shown in Table 1, where the symbol
“X” shows the related factors on which the missing data rates depend. For
example, when both “X” and “I” are checked, the missingness depends on the
individual’s latent intercept “I” and the observed covariate “X”. Four types of
missingness are studied: LID (also noted as XI in Table 1), LSD (XS), LOD
(XY), and ignorable (X). The shaded model, LSD (XS), is the true model we
used for generating the simulation data. Five levels of sample size (N=1000,
N=500, N=300, N=200 and N=100) are investigated, and for each sample size.
In total, 4×5=20 summary tables are combined and presented in Tables 2, 3,
and 5-9 2. Each result table is summarized from 100 converged replications.

4.2 Simulation Implementation

The simulation studies are implemented by the following algorithm. (1) Set
the counter R = 0. (2) Generate complete longitudinal growth data according
to predefined model parameters. (3) Create missing data according to missing
data mechanisms and missing data rates. (4) Generate Markov chains for model
parameters through the Gibbs sampling procedure. (5) Test the convergence of
generated Markov chains. (6) If the Markov chains pass the convergence test,
set R = R + 1 and calculate and save the parameter estimates. Otherwise, set
R = R and discard the current replication of simulation. (7) Repeat the above
process till R = 100 to obtain 100 replications of valid simulation.

In step 4, priors carrying little prior information are adopted (Congdon, 2003;
Gill, 2002; Zhang, Hamagami, Wang, Grimm, & Nesselroade, 2007). Specifically,

2 The summary table for the model with the latent intercept dependent (LID)
missingness (XI), for N=100 is not included due to its low convergence rate.
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Table 1. Simulation model design. N=1000, 500, 300, 200 and 100

Model X5 I6 S7 Y8

Ignorable (X) X

LID2 (XI) X X

LSD3 (XS)1 X X

LOD4 (XY) X X

Note. 1The shaded model is the true model XS. 2LID: Latent Intercept
Dependent. 3LSD: Latent Slope Dependent. 4LOD: Latent Outcome Dependent.
5X: Observed covariates. If X is the only item checked, the missingness
is ignorable. 6I: Individual latent intercept. If checked, the missingness is
non-ignorable. 7S: Individual latent slope. If checked, the missingness is
non-ignorable. 8Y: Individual potential outcome y. If checked, the missingness
is non-ignorable.

for ϕ1, we set µϕ1
= 02 and Σϕ1

= 103I2. For φ, we set v0k = s0k = 0.002. For
β, it is assumed that βk0 = 02 and Σk0 = 103I2. For Ψ, we define mk0 = 2
and Vk0 = I2. Finally, for γt, we let γt0 = 03 and Dt0 = 103I3, where 0d
and Id denote a d-dimensional zero vector and a d-dimensional identity matrix,
respectively. In step 5, the iteration number of burn-in period is set. The Geweke
convergence criterion indicated that less than 10,000 iterations was adequate for
all conditions in the study. Therefore, a conservative burn-in of 20,000 iterations
was used for all iterations. And then the Markov chains with a length of 20, 000
iterations are saved for convergence testing and data analysis. After step 7,
12 summary statistics are reported based on 100 sets of converged simulation
replications. For the purpose of presentation, let θj represent the jth parameter,
also the true value in the simulation. Twelve statistics are defined below. (1) The
average estimate (est.j) across 100 converged simulation replications of each

parameter is obtained as est.j =
¯̂
θj =

∑100
i=1 θ̂ij/100, where θ̂ij denotes the

estimate of θj in the ith simulation replication. (2) The simple bias (BIAS.smpj)

of each parameter is calculated as BIAS.smpj =
¯̂
θj − θj . (3) The relative bias

(BIAS.relj) of each parameter is calculated using BIAS.relj = (
¯̂
θj − θj)/θj when

θj 6= 0 and BIAS.relj =
¯̂
θj − θj when θj = 0. (4) The empirical standard error

(SE.empj) of each parameter is obtained as SE.empj =

√∑100
i=1(θ̂ij − ¯̂

θj)2/99,

and (5) the average standard error (SE.avgj) of the same parameter is calculated

by SE.avgj =
∑100
i=1 ŝij/100, where ŝij denotes the estimated standard error of

θ̂ij . (6) The average mean square error (MSE) of each parameter is obtained

by MSEj =
∑100
i=1 MSEij/100, where MSEij is the mean square error for the

jth parameter in the ith simulation replication, MSEij = (Biasij)
2 + (ŝij)

2. The
average lower (7) and upper (8) limits of the 95% percentile confidence interval

(CI.lowj and CI.upperj) are respectively defined as CI.lowj =
∑100
i=1 θ̂

l
ij/100 and

CI.upperj =
∑100
i=1 θ̂

u
ij/100 where θ̂lij and θ̂uij denote the 95% lower and upper
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limits of CI for the jth parameter, respectively. (9) The coverage probability of
the 95% percentile confidence interval (CI.coverj) of each parameter is obtained

using CI.coverj = [#(θ̂lij ≤ θj ≤ θ̂uij)]/100. The average lower (10), upper (11)
limits, and (12) the coverage probability of the 95% highest posterior density
credible interval ?HPD, ¿Box1973 of each parameter are similarly defined by
HPD.lowj , HPD.upperj , and HPD.coverj , respectively.

4.3 Simulation Results

In this section, we show simulation results for the estimates obtained from the
true model and misspecified models.

4.3.1 Estimates from the True Model. First, we investigate the estimates
obtained from the true model. Tables 3, 4 and 5 in the appendix show the
summarized estimates from the true model for N=1000, N=500, N=300, and
N=100. From Tables 3 with the sample size 1000, first, one can see that all the
relative estimate biases are very small, with the largest one being 0.067 for γ03.
Second, the difference between the empirical SEs and the average SEs is very
small, which indicates the SEs are estimated accurately. Third, both CI and
HPD interval coverage probabilities are very close to the theoretical percentage
95%, which means the type I error for each parameter is close to the specified
5% so that we can use the estimated confidence intervals to conduct statistical
inference. Fourth, this true model has 100% convergence rate. When the sample
sizes are smaller, the performance becomes worse as expected.

In order to compare estimates with different sample sizes, we further calculate
the five summary statistics across all parameters, which are shown in Table 2.
The first statistic is the average absolute relative biases (|Bias.rel|) across all
parameters, which is defined as |Bias.rel| =

∑p
j=1 |Bias.relj |/p, where p is the

total number parameters in a model. Second, we obtain the average absolute
differences between the empirical SEs and the average Bayesian SEs (|SE.diff|)
across all parameters by using |SE.diff| =

∑p
j=1 |SE.empj − SE.avgj |/p. Third,

we calculate the average percentile coverage probabilities (CI.cover) across all
parameters by using CI.cover =

∑p
j=1 CI.coverj/p. Fourth, we calculate the

average HPD coverage probabilities (HPD.cover) across all parameters by using
HPD.cover =

∑p
j=1 HPD.coverj/p. Fifth, the convergence rate is calculated.

Table 2 shows that, except for the case for N=100, the true mode can
recover model parameters very well, with small average absolute relative
biases of estimates, |Bias.rel|, small average absolute differences between the
empirical SEs and the average SEs, |SE.diff|, and almost 95% average percentile
coverage probabilities (CI.cover), and the average HPD coverage probabilities
(HPD.cover). With the increase of the sample size, both the point estimates and
standard errors get more accurate.

4.3.2 Comparison of Different Models. We now compare the estimates
obtained from the true model and different misspecified models. In this study,
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Table 2. Summary and Comparison of the Results of True Model XS

|Bias.rel|1 |SE.diff|2 MSE3 CI.cover4 HPD.cover5 CVG.rate6

N

1000 0.025 0.007 0.033 0.942 0.942 100%
500 0.052 0.021 0.079 0.932 0.939 100%
300 0.089 0.031 0.150 0.922 0.930 100%
200 0.160 0.090 0.366 0.909 0.924 94.34%
100 1.202 2.664 23.743 0.869 0.893 70.42%

Note. 1The average absolute relative bias across all parameters, defined by
|Bias.rel| =

∑p
j=1 |Bias.relj |/p. The smaller, the better. 2The average absolute

difference between the empirical SEs and the average Bayesian SEs across all
parameters, defined by |SE.diff| =

∑p
j=1 |SE.empj − SE.avgj |/p. The smaller,

the better. 3The Mean Square Errors (MSE) across all parameters, defined
by MSE =

∑p
j=1[(Biasj)

2 + (ŝj)
2]/p. The smaller, the better. 4The average

percentile coverage probability across all parameters, defined by CI.cover =∑p
j=1 CI.coverj/p, with a theoretical value of 0.95. 5The average highest

posterior density (HPD) coverage probability across all parameters, defined
by HPD.cover =

∑p
j=1 HPD.coverj/p, with a theoretical value of 0.95. 6The

convergence rate.

the true model is the LGCM with LSD (XS) missingness, and there are
three mis-specified models, the LGCM with LID (XI) missingness, the LGCM
with LOD (XY) missingness, and the LGCM with ignorable missingness
(see Table 1 for the simulation design). Table 6 in the appendix shows the
summarized estimates from the mis-specified model with LID (XI) missingness
for N=1000, N=500, N=300, and N=200 (the summarized estimates for N=100
are unavailable due to a low convergence rate). Table 9 in the appendix provides
the results for the mis-specified model with LOD (XY) missingness for N=1000,
N=500, N=300, N=200, and N=100. Table 10 in the appendix is the summary
table for the mis-specified model with ignorable (X) missingness for different
sample sizes.

To compare estimates from different models, we further summarize and
visualize some statistics. Figure 4 (a) compares the point estimates of intercept
and slope for all models when N=1000. The true value of slope is 3 but the
estimate is 2.711 when the missingness is ignored. Actually, for the model with
ignorable missingness, the slope estimates are all less than 2.711 for all sample
sizes in our study. Figure 4 (b) focuses on the coverage of slope. When the
missingness is ignored, it is as low as 4% for N=1000, and 21% for N=500 (the
coverage for N=1000 is lower because the SE for N=1000 is smaller than the
SE for N=500). As a result, conclusions based on the model with ignorable
missingness can be very misleading. Figure 4 (b) also shows that the slope
estimate from the model with the mis-specified missingness, LID (XI), has low
coverage, with 76% for N=1000 and 87% for N=500. So the conclusions based on
this model may still be incorrect. Figure 4 (c) compares the true model and the
model with another type of mis-specified missingness, LOD (XY) for N=1000.
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For the wrong model, the coverage is 51% for intercept, and 72% for Cov(I,S).
Finally, Figure 4 (d) compares the convergence rates for all models. One can see
that the convergence rates of LOD (XY) and LID (XI) models are much lower
than those of the true model LSD (XS) and the model with ignorable missingness.
When the missingness is ignored, the number of parameters is smaller than that
of non-ignorable models, and then convergence rate gets higher.Non-ignorable Missingness in LGCMs 17
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In summary, the estimates from mis-specified models may result in misleading
conclusions, especially when the missingness is ignored. Also, the convergence
rate of a mis-specified model is usually lower than that of the true model.
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4.4 Simulation Conclusions

Based on the simulation studies, we draw the following conclusions: (1) the
proposed Bayesian method can accurately recover model parameters (both
point estimates and standard errors), (2) the small difference between the
empirical SE and the average SE indicates that the Bayesian method used in
the study can estimate the standard errors accurately, (3) with the increase
of the sample size, estimates get closer to their true values and standard
errors become more accurate, (4) ignoring the non-ignorable missingness can
lead to incorrect conclusions, (5) mis-specified missingness may also result in
misleading conclusions, and (6) the non-convergence of models might be a sign
of a misspecified model.

5 Discussion

The models proposed in this article have several implications for future research.
First, the missingness in the simulation study is assumed to be independent
across different times. If this assumption is violated, likelihood functions might
be much more complicated. For example, if the missingness depends on the
previous missingness, then the autocorrelation among missingness might be
involved. A similar model is the Diggle and Kenward (1994)’s model, in which
the probability of missing data at current wave depends directly on the current
outcomes as well as on the preceding assessment. Another example is survival
analysis (e.g., Klein & Moeschberger, 2003), in which censoring is the common
form of missing data problem. In practice, the missingness can come from
different sources and can be modeled as a combination of different types of
missingness. Second, various model selection criteria could be considered (e.g.,
Cain & Zhang, 2019). It is an interesting topic for future work to propose
new criteria. For example, observed-data and complete-data likelihood functions
for random effects models can be used for f(y|θ); information criterion can
be proposed using other weighted combination of the growth model and the
missing data model. Third, the data considered in the study are assumed to be
normally distributed. However, in reality, data are seldom normally distributed,
particularly in behavioral and educational sciences (e.g., Cain, Zhang, & Yuan,
2017; Micceri, 1989). When data have heavy tails, or contaminated with outliers,
robust models (e.g., Hoaglin, Mosteller, & Tukey, 1983; Huber, 1996; Zhang,
2013; Zhang, Lai, Lu, & Tong, 2013) should be adopted to make models
insensitive to small deviations from the assumption of normal distribution.
Fourth, latent population heterogeneity (e.g., McLachlan & Peel, 2000) may
exist in the collected longitudinal data. Growth mixture models (GMMs) can
be considered to provide a flexible set of models for analyzing longitudinal data
with latent or mixture distributions (e.g., Bartholomew & Knott, 1999).
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Appendix

Appendix A. The Derived Posteriors for LGCMs with Non-ignorable
Missingness

Let η = (η1,η2, . . . ,ηN ), and the conditional posterior distribution for φ can be
easily derived as an Inverse Gamma distribution,

φ|η,y ∼ IG (a1/2, b1/2) , (8)

where a1 = v0 +N T , and b1 = s0 +
∑N
i=1(yi −Ληi)

′(yi −Ληi).
Notice that tr(AB) = tr(BA), so the conditional posterior distribution for

Ψ is derived as an Inverse Wishart distribution,

Ψ|β,η ∼ IW (m1,V1) , (9)

where m1 = m0 +N , and V1 = V0 +
∑N
i=1(ηi − β)(ηi − β)′.

By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for β is derived as a multivariate
normal distribution,

β|Ψ,η ∼MN(β1,Σ1), (10)

where β1 =
(
N Ψ−1 + Σ−10

)−1 (
Ψ−1

∑N
i=1 ηi + Σ−10 β0

)
, and Σ1 =(

N Ψ−1 + Σ−10

)−1
.

The conditional posterior for γt, (t = 1, 2, . . . , T ), is a distribution of

f(γt|ω,x,m) ∝ exp

[
− 1

2
(γt − γt0)′D−1t0 (γt − γt0)

+

N∑
i=1

{mit logΦ(ω′iγt) + (1−mit) log[1− Φ(ω′iγt)]}
]
.

(11)
where Φ(ω′iγt) is defined by Equation (4), (5), or (6).

By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for ηi, i = 1, 2, . . . , N , is derived as
a Multivariate Normal distribution,

ηi|φ,Ψ,β,yi ∼MN(µηi,Σηi), (12)
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where µηi =
(

1
φΛ′Λ + Ψ−1

)−1 (
1
φΛ′yi + Ψ−1β

)
, and Σηi =(

1
φΛ′Λ + Ψ−1

)−1
.

The conditional posterior distribution for the missing data ymisi , i =
1, 2, . . . , N , is a normal distribution,

ymisi |ηi, φ ∼MN [Ληi, Iφ] , (13)

where I is a T × T identity matrix. The dimension and location of ymisi depend
on the corresponding mi value.
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Appendix B. Simulation Results

Table 3. Summarized Estimates from True Model: LGCM with LSD Missingness (XS).
N=1000 (convergence rate: 100/100 = 100%)

BIAS SE CI9 HPD13

para.1 true2 est.3 smp.4 rel.5 emp.6 avg.7 MSE8 lower10 upper11 cover12 lower upper cover

G
ro

w
th

C
u
rv

e I 1 0.998 -0.002 -0.002 0.05 0.053 0.005 0.894 1.101 0.99 0.894 1.101 0.98

S 3 3.003 0.003 0.001 0.079 0.077 0.012 2.853 3.155 0.97 2.853 3.154 0.96

var(I) 1 1.011 0.011 0.011 0.105 0.102 0.022 0.82 1.22 0.94 0.814 1.213 0.94

var(S) 4 3.99 -0.01 -0.003 0.232 0.232 0.107 3.56 4.468 0.94 3.545 4.449 0.93

cov(IS) 0 0.001 0.001 0.001 0.119 0.112 0.026 -0.221 0.217 0.94 -0.218 0.218 0.94

var(e) 1 1 0 0 0.043 0.042 0.004 0.92 1.086 0.92 0.918 1.084 0.93

M
is

si
n
gn

es
s

P
ar

a
m

et
er

s W
av

e
1 γ01 -1 -1.025 -0.025 0.025 0.184 0.174 0.065 -1.375 -0.694 0.93 -1.365 -0.69 0.94

γx1 -1.5 -1.541 -0.041 0.027 0.138 0.123 0.036 -1.795 -1.314 0.92 -1.783 -1.307 0.93

γS1 0.5 0.515 0.015 0.03 0.066 0.062 0.008 0.4 0.641 0.9 0.397 0.636 0.92

W
av

e
2 γ02 -1 -1.038 -0.038 0.038 0.191 0.171 0.067 -1.385 -0.714 0.96 -1.376 -0.711 0.97

γx2 -1.5 -1.551 -0.051 0.034 0.129 0.119 0.034 -1.798 -1.33 0.95 -1.786 -1.323 0.94

γS2 0.5 0.521 0.021 0.042 0.066 0.06 0.008 0.41 0.643 0.95 0.408 0.639 0.94

W
av

e
3 γ03 -1 -1.067 -0.067 0.067 0.186 0.172 0.069 -1.417 -0.741 0.94 -1.407 -0.737 0.94

γx3 -1.5 -1.557 -0.057 0.038 0.117 0.116 0.03 -1.796 -1.341 0.97 -1.785 -1.334 0.97

γS3 0.5 0.529 0.029 0.058 0.063 0.058 0.008 0.42 0.648 0.89 0.418 0.643 0.91

W
av

e
4 γ04 -1 -1.034 -0.034 0.034 0.18 0.173 0.063 -1.384 -0.709 0.94 -1.374 -0.704 0.93

γx4 -1.5 -1.539 -0.039 0.026 0.122 0.114 0.029 -1.773 -1.325 0.95 -1.763 -1.319 0.94

γS4 0.5 0.514 0.014 0.027 0.058 0.057 0.007 0.407 0.63 0.95 0.405 0.625 0.95

Note. The results are summarized based on 100 converged replications with a
convergence rate of 100/100 = 100%. 1The estimated parameter. 2The true
value of the corresponding parameter. 3The parameter estimate, defined by

est.j =
¯̂
θj =

∑100
i=1 θ̂ij/100. 4The simple bias, defined by BIAS.smpj =

¯̂
θj − θj .

5The relative bias, defined by BIAS.relj = (
¯̂
θj − θj)/θj when θj 6= 0 and

BIAS.relj =
¯̂
θj − θj when θj = 0. 6The empirical standard errors, defined

by SE.empj =

√∑100
i=1(θ̂ij − ¯̂

θj)2/99. 7The average standard errors, defined

by SE.avgj =
∑100
i=1 ŝij/100. 8The mean square error, defined by MSEj =∑100

i=1 MSEij/100, where MSEij = (Biasij)
2 + (ŝij)

2. 9For percentile confidence
interval. 10The average lower 2.5% percentile. 11The average upper 97.5%
percentile. 12The average 95% coverage of percentile confidence interval. 13The
lower,upper bounds, and coverage for HPD interval.
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Table 4. Summarized Estimates from True Model: LGCM with LSD Missingness (XS)
(con’t)

BIAS SE CI9 HPD13

para.1 true2 est.3 smp.4 rel.5 emp.6 avg.7 MSE8 lower10 upper11 cover12 lower upper cover

N=500 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 0.986 -0.014 -0.014 0.076 0.074 0.011 0.841 1.132 0.93 0.841 1.132 0.95

S 3 3.001 0.001 0 0.097 0.109 0.021 2.789 3.216 0.97 2.788 3.213 0.97

var(I) 1 0.976 -0.024 -0.024 0.146 0.144 0.042 0.712 1.274 0.97 0.7 1.26 0.97

var(S) 4 4.001 0.001 0 0.388 0.329 0.258 3.403 4.691 0.9 3.373 4.652 0.9

cov(IS) 0 -0.009 -0.009 -0.009 0.155 0.157 0.049 -0.324 0.294 0.96 -0.319 0.297 0.96

var(e) 1 1.014 0.014 0.014 0.06 0.061 0.007 0.901 1.141 0.96 0.897 1.136 0.96

M
is

si
n
gn

es
s

P
ar

a
m

et
er

s W
av

e
1 γ01 -1 -1.082 -0.082 0.082 0.254 0.255 0.137 -1.609 -0.608 0.95 -1.587 -0.596 0.97

γx1 -1.5 -1.606 -0.106 0.071 0.181 0.186 0.079 -2.002 -1.275 0.95 -1.975 -1.258 0.97

γS1 0.5 0.54 0.04 0.081 0.083 0.092 0.017 0.375 0.735 0.95 0.368 0.722 0.94

W
av

e
2 γ02 -1 -1.096 -0.096 0.096 0.281 0.252 0.152 -1.61 -0.624 0.89 -1.591 -0.615 0.89

γx2 -1.5 -1.615 -0.115 0.077 0.204 0.18 0.088 -1.996 -1.291 0.91 -1.971 -1.275 0.94

γS2 0.5 0.546 0.046 0.092 0.104 0.088 0.021 0.385 0.73 0.87 0.379 0.719 0.88

W
av

e
3 γ03 -1 -1.068 -0.068 0.068 0.32 0.248 0.169 -1.572 -0.602 0.93 -1.555 -0.594 0.93

γx3 -1.5 -1.613 -0.113 0.075 0.279 0.174 0.123 -1.978 -1.295 0.9 -1.958 -1.283 0.93

γS3 0.5 0.536 0.036 0.072 0.116 0.084 0.022 0.381 0.71 0.92 0.378 0.702 0.91

W
av

e
4 γ04 -1 -1.123 -0.123 0.123 0.261 0.257 0.15 -1.652 -0.647 0.94 -1.628 -0.633 0.95

γx4 -1.5 -1.579 -0.079 0.053 0.174 0.168 0.066 -1.933 -1.274 0.95 -1.913 -1.261 0.96

γS4 0.5 0.543 0.043 0.086 0.089 0.085 0.017 0.388 0.719 0.92 0.382 0.71 0.92

N=300 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.001 0.001 0.001 0.104 0.097 0.02 0.81 1.192 0.89 0.811 1.192 0.89

S 3 2.984 -0.016 -0.005 0.149 0.14 0.042 2.712 3.262 0.93 2.71 3.259 0.93

var(I) 1 1.014 0.014 0.014 0.183 0.19 0.07 0.673 1.418 0.96 0.654 1.392 0.96

var(S) 4 3.975 -0.025 -0.006 0.416 0.425 0.354 3.22 4.886 0.96 3.174 4.82 0.96

cov(IS) 0 0.054 0.054 0.054 0.212 0.205 0.09 -0.359 0.449 0.94 -0.351 0.454 0.93

var(e) 1 1.011 0.011 0.011 0.073 0.08 0.012 0.867 1.179 0.96 0.86 1.17 0.96

M
is

si
n
gn

es
s

P
ar

am
et

er
s W

av
e

1 γ01 -1 -1.094 -0.094 0.094 0.341 0.345 0.249 -1.822 -0.468 0.97 -1.778 -0.441 0.97

γx1 -1.5 -1.65 -0.15 0.1 0.265 0.253 0.162 -2.209 -1.217 0.92 -2.155 -1.185 0.94

γS1 0.5 0.548 0.048 0.097 0.121 0.124 0.033 0.331 0.82 0.97 0.318 0.794 0.97

W
av

e
2 γ02 -1 -1.106 -0.106 0.106 0.452 0.34 0.341 -1.819 -0.486 0.93 -1.782 -0.467 0.93

γx2 -1.5 -1.692 -0.192 0.128 0.345 0.253 0.23 -2.243 -1.254 0.89 -2.196 -1.227 0.9

γS2 0.5 0.566 0.066 0.132 0.158 0.121 0.046 0.354 0.827 0.93 0.343 0.807 0.92

W
av

e
3 γ03 -1 -1.139 -0.139 0.139 0.397 0.335 0.293 -1.845 -0.527 0.91 -1.801 -0.503 0.92

γx3 -1.5 -1.648 -0.148 0.099 0.305 0.236 0.175 -2.152 -1.233 0.86 -2.115 -1.21 0.92

γS3 0.5 0.566 0.066 0.132 0.141 0.115 0.038 0.361 0.811 0.9 0.352 0.794 0.91

W
av

e
4 γ04 -1 -1.217 -0.217 0.217 0.411 0.356 0.347 -1.976 -0.576 0.9 -1.932 -0.552 0.9

γx4 -1.5 -1.681 -0.181 0.121 0.263 0.241 0.163 -2.203 -1.257 0.9 -2.161 -1.231 0.92

γS4 0.5 0.583 0.083 0.165 0.138 0.118 0.041 0.372 0.839 0.88 0.363 0.82 0.91

Note. The same as Table 3
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Table 5. Summarized Estimates from True Model: LGCM with LSD Missingness (XS)
(con’t)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=200 (convergence rate: 100/106 ≈ 94.34%)

G
ro

w
th

C
u
rv

e I 1 1.011 0.011 0.011 0.099 0.119 0.024 0.779 1.244 0.98 0.779 1.243 0.98
S 3 2.975 -0.025 -0.008 0.177 0.171 0.061 2.643 3.314 0.93 2.642 3.312 0.94
var(I) 1 1.011 0.011 0.011 0.228 0.233 0.107 0.601 1.516 0.94 0.572 1.476 0.92
var(S) 4 4 0 0 0.474 0.522 0.498 3.095 5.135 0.97 3.029 5.041 0.96
cov(IS) 0 0.065 0.065 0.065 0.257 0.252 0.134 -0.447 0.549 0.92 -0.436 0.557 0.92
var(e) 1 1.027 0.027 0.027 0.098 0.099 0.02 0.851 1.238 0.95 0.84 1.224 0.95

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 -1 -1.3 -0.3 0.3 0.671 0.5 0.901 -2.399 -0.449 0.93 -2.306 -0.402 0.94

γx1 -1.5 -1.874 -0.374 0.249 0.745 0.424 1.113 -2.868 -1.227 0.88 -2.735 -1.169 0.91
γS1 0.5 0.647 0.147 0.293 0.323 0.197 0.202 0.334 1.1 0.91 0.311 1.045 0.92

W
av

e
2 γ02 -1 -1.278 -0.278 0.278 0.69 0.468 0.838 -2.303 -0.463 0.87 -2.227 -0.426 0.89

γx2 -1.5 -1.779 -0.279 0.186 0.456 0.349 0.451 -2.578 -1.209 0.91 -2.487 -1.163 0.9
γS2 0.5 0.627 0.127 0.254 0.244 0.171 0.117 0.343 1.014 0.9 0.324 0.976 0.91

W
av

e
3 γ03 -1 -1.191 -0.191 0.191 0.505 0.436 0.5 -2.133 -0.419 0.91 -2.05 -0.377 0.93

γx3 -1.5 -1.721 -0.221 0.147 0.502 0.314 0.426 -2.428 -1.193 0.9 -2.348 -1.15 0.94
γS3 0.5 0.586 0.086 0.172 0.183 0.152 0.068 0.326 0.926 0.91 0.309 0.889 0.95

W
av

e
4 γ04 -1 -1.27 -0.27 0.27 0.594 0.467 0.67 -2.304 -0.457 0.86 -2.209 -0.404 0.9

γx4 -1.5 -1.808 -0.308 0.205 0.397 0.336 0.382 -2.56 -1.24 0.82 -2.48 -1.195 0.89
γS4 0.5 0.618 0.118 0.236 0.204 0.16 0.085 0.345 0.98 0.88 0.325 0.942 0.89

N=100 (convergence rate: 100/142 ≈ 70.42%)

G
ro

w
th

C
u
rv

e I 1 1.031 0.031 0.031 0.167 0.168 0.057 0.701 1.359 0.96 0.701 1.359 0.97
S 3 2.983 -0.017 -0.006 0.236 0.242 0.115 2.514 3.467 0.95 2.51 3.46 0.94
var(I) 1 0.933 -0.067 -0.067 0.305 0.323 0.206 0.408 1.665 0.93 0.355 1.574 0.91
var(S) 4 3.965 -0.035 -0.009 0.829 0.747 1.261 2.743 5.656 0.91 2.623 5.458 0.91
cov(IS) 0 0.069 0.069 0.069 0.333 0.357 0.246 -0.666 0.748 0.93 -0.646 0.762 0.95
var(e) 1 1.078 0.078 0.078 0.157 0.151 0.054 0.82 1.409 0.93 0.801 1.38 0.94

M
is

si
n
gn

es
s

P
a
ra

m
et

er
s

W
av

e
1 γ01 -1 -3.257 -2.257 2.257 5.794 1.333 42.792 -6.264 -1.131 0.84 -5.922 -1.018 0.86

γx1 -1.5 -4.314 -2.814 1.876 7.492 1.277 69.337 -7.171 -2.396 0.8 -6.739 -2.251 0.85
γS1 0.5 1.626 1.126 2.252 2.881 0.55 10.353 0.788 2.857 0.8 0.746 2.698 0.84

W
av

e
2 γ02 -1 -3.011 -2.011 2.011 5.719 1.322 41.711 -6.062 -1.027 0.85 -5.696 -0.893 0.88

γx2 -1.5 -3.772 -2.272 1.515 6.947 1.283 61.237 -6.811 -1.927 0.82 -6.385 -1.774 0.85
γS2 0.5 1.436 0.936 1.871 2.57 0.549 8.564 0.653 2.71 0.81 0.586 2.527 0.86

W
av

e
3 γ03 -1 -2.877 -1.877 1.877 5.93 1.2 42.401 -5.493 -0.898 0.89 -5.233 -0.806 0.91

γx3 -1.5 -3.86 -2.36 1.573 6.955 1.153 58.835 -6.508 -2.086 0.83 -6.125 -1.932 0.85
γS3 0.5 1.388 0.888 1.776 2.567 0.467 7.977 0.641 2.428 0.85 0.596 2.289 0.89

W
av

e
4 γ04 -1 -2.831 -1.831 1.831 5.646 1.297 39.835 -5.902 -0.891 0.89 -5.522 -0.753 0.90

γx4 -1.5 -3.386 -1.886 1.257 5.379 1.127 37.532 -6.048 -1.745 0.81 -5.622 -1.586 0.88
γS4 0.5 1.222 0.722 1.444 1.944 0.457 4.854 0.552 2.312 0.84 0.491 2.152 0.88

Note. Abbreviations are as given in Table 3.
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Table 6. Summarized Estimates from LGCM with LID Missingness (XI)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=1000 (convergence rate: 100/112 ≈ 89.29%)

G
ro

w
th

C
u
rv

e I 1 1.064 0.064 0.064 0.052 0.044 0.009 0.977 1.151 0.66 0.977 1.150 0.66
S 3 2.921 -0.079 -0.026 0.082 0.074 0.018 2.776 3.067 0.77 2.777 3.066 0.76
var(I) 1 0.169 -0.831 -0.831 0.036 0.031 0.693 0.117 0.237 0 0.113 0.230 0
var(S) 4 3.494 -0.506 -0.126 0.218 0.203 0.344 3.116 3.913 0.40 3.103 3.897 0.37
cov(IS) 0 0.629 0.629 0.629 0.064 0.064 0.404 0.511 0.762 0 0.507 0.756 0
var(e) 1 1.439 0.439 0.439 0.049 0.050 0.197 1.343 1.540 0 1.341 1.538 0

M
is

si
n

gn
es

s
P

ar
am

et
er

s
W

av
e

1 γ01 NA -2.411 NA NA 0.476 0.442 NA -3.325 -1.619 NA -3.27 -1.612 NA
γx1 NA -1.632 NA NA 0.178 0.152 NA -1.961 -1.362 NA -1.939 -1.35 NA
γI1 NA 2.794 NA NA 0.479 0.442 NA 2.011 3.72 NA 2.009 3.661 NA

W
av

e
2 γ02 NA -2.439 NA NA 0.543 0.444 NA -3.395 -1.667 NA -3.321 -1.646 NA

γx2 NA -1.644 NA NA 0.163 0.148 NA -1.962 -1.382 NA -1.938 -1.368 NA
γI2 NA 2.826 NA NA 0.546 0.437 NA 2.074 3.762 NA 2.045 3.682 NA

W
av

e
3 γ03 NA -2.442 NA NA 0.492 0.426 NA -3.336 -1.678 NA -3.277 -1.662 NA

γx3 NA -1.632 NA NA 0.137 0.143 NA -1.934 -1.375 NA -1.915 -1.364 NA
γI3 NA 2.819 NA NA 0.482 0.422 NA 2.063 3.718 NA 2.048 3.646 NA

W
av

e
4 γ04 NA -2.367 NA NA 0.48 0.427 NA -3.262 -1.596 NA -3.199 -1.581 NA

γx4 NA -1.617 NA NA 0.146 0.141 NA -1.917 -1.362 NA -1.896 -1.35 NA
γI4 NA 2.733 NA NA 0.448 0.422 NA 1.98 3.616 NA 1.978 3.569 NA

N=500 (convergence rate: 100/118 ≈ 84.75%)

G
ro

w
th

C
u
rv

e I 1 1.060 0.060 0.060 0.076 0.063 0.013 0.938 1.186 0.78 0.937 1.184 0.79
S 3 2.914 -0.086 -0.029 0.099 0.105 0.028 2.710 3.120 0.88 2.709 3.118 0.87
var(I) 1 0.197 -0.803 -0.803 0.046 0.048 0.650 0.121 0.309 0 0.114 0.294 0
var(S) 4 3.448 -0.552 -0.138 0.315 0.284 0.484 2.934 4.043 0.56 2.909 4.012 0.54
cov(IS) 0 0.633 0.633 0.633 0.074 0.088 0.414 0.474 0.819 0 0.466 0.808 0
var(e) 1 1.425 0.425 0.425 0.079 0.072 0.192 1.289 1.571 0 1.286 1.567 0

M
is

si
n

g
n

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA -2.471 NA NA 0.726 0.665 NA -3.903 -1.333 NA -3.789 -1.292 NA

γx1 NA -1.765 NA NA 0.298 0.269 NA -2.385 -1.329 NA -2.31 -1.294 NA
γI1 NA 2.898 NA NA 0.716 0.671 NA 1.762 4.339 NA 1.718 4.215 NA

W
av

e
2 γ02 NA -2.393 NA NA 0.77 0.631 NA -3.746 -1.328 NA -3.63 -1.281 NA

γx2 NA -1.723 NA NA 0.265 0.239 NA -2.257 -1.325 NA -2.206 -1.297 NA
γI2 NA 2.815 NA NA 0.737 0.627 NA 1.759 4.162 NA 1.712 4.048 NA

W
av

e
3 γ03 NA -2.425 NA NA 0.779 0.644 NA -3.804 -1.337 NA -3.681 -1.293 NA

γx3 NA -1.761 NA NA 0.352 0.257 NA -2.336 -1.343 NA -2.271 -1.309 NA
γI3 NA 2.858 NA NA 0.796 0.647 NA 1.775 4.235 NA 1.729 4.104 NA

W
av

e
4 γ04 NA -2.396 NA NA 0.782 0.655 NA -3.86 -1.312 NA -3.693 -1.24 NA

γx4 NA -1.687 NA NA 0.294 0.24 NA -2.223 -1.288 NA -2.167 -1.259 NA
γI4 NA 2.805 NA NA 0.818 0.662 NA 1.713 4.275 NA 1.657 4.119 NA

Note. Abbreviations are as given in Table 3.
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Table 7. Summarized Estimates from LGCM with LID Missingness (XI) (con’t)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=300 (convergence rate: 100/148 ≈ 67.57%)

G
ro

w
th

C
u
rv

e I 1 1.077 0.077 0.077 0.11 0.083 0.025 0.916 1.242 0.78 0.915 1.24 0.81
S 3 2.864 -0.136 -0.045 0.139 0.135 0.056 2.601 3.131 0.87 2.6 3.129 0.87
var(I) 1 0.251 -0.749 -0.749 0.084 0.076 0.574 0.136 0.429 0.01 0.123 0.402 0.01
var(S) 4 3.424 -0.576 -0.144 0.369 0.366 0.601 2.775 4.209 0.71 2.734 4.153 0.67
cov(IS) 0 0.656 0.656 0.656 0.118 0.119 0.458 0.445 0.909 0 0.433 0.892 0
var(e) 1 1.413 0.413 0.413 0.101 0.095 0.19 1.237 1.608 0 1.232 1.601 0

M
is

si
n

gn
es

s
P

ar
am

et
er

s
W

av
e

1 γ01 NA -2.672 NA NA 1.64 0.984 NA -4.884 -1.166 NA -4.637 -1.069 NA
γx1 NA -2.055 NA NA 0.913 0.487 NA -3.218 -1.343 NA -3.058 -1.277 NA
γS1 NA 3.108 NA NA 1.68 1.008 NA 1.582 5.378 NA 1.502 5.129 NA

W
av

e
2 γ02 NA -2.768 NA NA 3.488 0.966 NA -4.978 -1.265 NA -4.741 -1.185 NA

γx2 NA -2.243 NA NA 2.502 0.507 NA -3.445 -1.474 NA -3.282 -1.402 NA
γS2 NA 3.409 NA NA 4.711 0.994 NA 1.895 5.668 NA 1.809 5.422 NA

W
av

e
3 γ03 NA -2.68 NA NA 2.057 0.915 NA -4.769 -1.249 NA -4.567 -1.176 NA

γx3 NA -1.999 NA NA 0.878 0.421 NA -2.989 -1.348 NA -2.861 -1.289 NA
γS3 NA 3.118 NA NA 1.884 0.936 NA 1.66 5.234 NA 1.59 5.008 NA

W
av

e
4 γ04 NA -2.907 NA NA 2.499 0.941 NA -4.948 -1.426 NA -4.744 -1.353 NA

γx4 NA -2.204 NA NA 1.651 0.498 NA -3.333 -1.449 NA -3.196 -1.39 NA
γS4 NA 3.371 NA NA 2.766 0.98 NA 1.875 5.511 NA 1.804 5.296 NA

N=200 (convergence rate: 100/197 ≈ 50.76%)

G
ro

w
th

C
u
rv

e I 1 1.052 0.082 0.082 0.219 0.1 0.03 0.858 1.248 0.79 0.857 1.247 0.79
S 3 2.796 -0.114 -0.038 0.525 0.161 0.071 2.484 3.114 0.85 2.483 3.112 0.85
var(I) 1 0.322 -0.648 -0.648 0.15 0.115 0.469 0.15 0.593 0.1 0.13 0.549 0.07
var(S) 4 3.353 -0.527 -0.132 0.739 0.435 0.677 2.6 4.302 0.74 2.546 4.225 0.71
cov(IS) 0 0.617 0.617 0.617 0.276 0.147 0.479 0.352 0.93 0.01 0.338 0.91 0.01
var(e) 1 1.346 0.376 0.376 0.267 0.115 0.174 1.135 1.586 0.07 1.126 1.574 0.08

M
is

si
n

g
n

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA -2.974 NA NA 5.157 1.352 NA -6.046 -0.844 NA -5.701 -0.814 NA

γx1 NA -3.03 NA NA 3.647 0.986 NA -5.376 -1.659 NA -5.055 -1.54 NA
γS1 NA 3.622 NA NA 6.034 1.465 NA 1.414 6.896 NA 1.354 6.57 NA

W
av

e
2 γ02 NA -3.094 NA NA 3.737 1.162 NA -5.77 -1.267 NA -5.452 -1.163 NA

γx2 NA -2.551 NA NA 2.369 0.681 NA -4.154 -1.547 NA -3.906 -1.441 NA
γS2 NA 3.652 NA NA 4.116 1.194 NA 1.823 6.378 NA 1.709 6.06 NA

W
av

e
3 γ03 NA -2.198 NA NA 4.971 1.179 NA -4.869 -0.328 NA -4.545 -0.211 NA

γx3 NA -2.705 NA NA 3.501 0.746 NA -4.405 -1.534 NA -4.189 -1.452 NA
γS3 NA 2.627 NA NA 5.346 1.21 NA 0.723 5.342 NA 0.631 4.989 NA

W
av

e
4 γ04 NA -3.469 NA NA 4.108 1.285 NA -6.288 -1.421 NA -6.014 -1.338 NA

γx4 NA -3.122 NA NA 3.555 0.912 NA -5.198 -1.739 NA -4.895 -1.646 NA
γS4 NA 4.199 NA NA 4.895 1.378 NA 2.059 7.192 NA 1.978 6.86 NA

N=100 (unavailable due to low convergence rate)

Note. Abbreviations are as given in Table 3.
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Table 8. Summarized Estimates from LGCM with LOD Missingness (XY)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=1000 (convergence rate: 100/126 ≈ 79.37%)

G
ro

w
th

C
u
rv

e I 1 1.12 0.12 0.12 0.062 0.06 0.022 1.002 1.238 0.52 1.002 1.237 0.51
S 3 3.003 0.003 0.001 0.084 0.078 0.013 2.85 3.158 0.94 2.849 3.156 0.94
var(I) 1 1.03 0.03 0.03 0.105 0.108 0.024 0.828 1.252 0.93 0.823 1.245 0.93
var(S) 4 3.994 -0.006 -0.002 0.253 0.235 0.119 3.556 4.479 0.91 3.542 4.46 0.90
cov(IS) 0 0.112 0.112 0.112 0.146 0.116 0.047 -0.118 0.337 0.74 -0.115 0.338 0.72
var(e) 1 1.015 0.015 0.015 0.048 0.044 0.004 0.933 1.105 0.91 0.93 1.102 0.92

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA 0.164 NA NA 0.134 0.117 NA -0.072 0.387 NA -0.066 0.39 NA

γx1 NA -1.106 NA NA 0.076 0.071 NA -1.249 -0.973 NA -1.244 -0.97 NA
γS1 NA 0.156 NA NA 0.093 0.073 NA 0.014 0.299 NA 0.014 0.297 NA

W
av

e
2 γ02 NA -1.156 NA NA 0.185 0.196 NA -1.557 -0.789 NA -1.54 -0.781 NA

γx2 NA -1.468 NA NA 0.127 0.108 NA -1.69 -1.267 NA -1.682 -1.262 NA
γS2 NA 0.387 NA NA 0.047 0.044 NA 0.304 0.477 NA 0.302 0.473 NA

W
av

e
3 γ03 NA -1.235 NA NA 0.196 0.186 NA -1.611 -0.88 NA -1.602 -0.878 NA

γx3 NA -1.515 NA NA 0.117 0.109 NA -1.739 -1.311 NA -1.731 -1.306 NA
γS3 NA 0.241 NA NA 0.028 0.025 NA 0.193 0.292 NA 0.193 0.291 NA

W
av

e
4 γ04 NA -1.179 NA NA 0.189 0.182 NA -1.547 -0.833 NA -1.537 -0.831 NA

γx4 NA -1.511 NA NA 0.111 0.109 NA -1.735 -1.308 NA -1.726 -1.302 NA
γS4 NA 0.164 NA NA 0.018 0.017 NA 0.131 0.2 NA 0.131 0.198 NA

N=500 (convergence rate: 100/110 ≈ 90.91%)

G
ro

w
th

C
u
rv

e I 1 1.121 0.121 0.121 0.098 0.085 0.032 0.956 1.288 0.68 0.956 1.287 0.69
S 3 3.008 0.008 0.003 0.107 0.11 0.024 2.793 3.226 0.95 2.793 3.224 0.94
var(I) 1 1.004 0.004 0.004 0.146 0.152 0.044 0.725 1.322 0.96 0.714 1.308 0.95
var(S) 4 3.996 -0.004 -0.001 0.399 0.334 0.27 3.391 4.698 0.86 3.365 4.662 0.86
cov(IS) 0 0.102 0.102 0.102 0.178 0.163 0.069 -0.223 0.417 0.88 -0.219 0.42 0.89
var(e) 1 1.026 0.026 0.026 0.062 0.063 0.008 0.91 1.156 0.95 0.906 1.151 0.94

M
is

si
n
gn

es
s

P
a
ra

m
et

er
s

W
av

e
1 γ01 NA 0.131 NA NA 0.2 0.175 NA -0.228 0.459 NA -0.214 0.467 NA

γx1 NA -1.143 NA NA 0.119 0.107 NA -1.366 -0.947 NA -1.354 -0.939 NA
γS1 NA 0.18 NA NA 0.133 0.109 NA -0.032 0.396 NA -0.03 0.395 NA

W
av

e
2 γ02 NA -1.246 NA NA 0.344 0.292 NA -1.854 -0.709 NA -1.822 -0.691 NA

γx2 NA -1.52 NA NA 0.171 0.162 NA -1.859 -1.225 NA -1.841 -1.215 NA
γS2 NA 0.409 NA NA 0.078 0.066 NA 0.288 0.547 NA 0.285 0.539 NA

W
av

e
3 γ03 NA -1.282 NA NA 0.332 0.278 NA -1.858 -0.768 NA -1.827 -0.753 NA

γx3 NA -1.577 NA NA 0.257 0.166 NA -1.922 -1.275 NA -1.903 -1.262 NA
γS3 NA 0.249 NA NA 0.049 0.038 NA 0.18 0.327 NA 0.178 0.324 NA

W
av

e
4 γ04 NA -1.277 NA NA 0.277 0.269 NA -1.833 -0.774 NA -1.808 -0.763 NA

γx4 NA -1.546 NA NA 0.171 0.159 NA -1.878 -1.255 NA -1.861 -1.244 NA
γS4 NA 0.174 NA NA 0.028 0.026 NA 0.126 0.227 NA 0.125 0.224 NA

Note. Abbreviations are as given in Table 3.
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Table 9. Summarized Estimates from LGCM with LOD Missingness (XY) (con’t)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=300 (convergence rate: 100/107 ≈ 93.46%)
G

ro
w

th
C

u
rv

e I 1 1.139 0.139 0.139 0.127 0.111 0.047 0.922 1.357 0.70 0.922 1.356 0.69
S 3 2.988 -0.012 -0.004 0.157 0.144 0.046 2.708 3.274 0.90 2.707 3.272 0.90
var(I) 1 1.045 0.045 0.045 0.196 0.204 0.082 0.682 1.479 0.94 0.661 1.451 0.95
var(S) 4 4.04 0.04 0.01 0.463 0.44 0.41 3.261 4.982 0.92 3.212 4.915 0.95
cov(IS) 0 0.153 0.153 0.153 0.256 0.215 0.135 -0.277 0.569 0.85 -0.27 0.574 0.84
var(e) 1 1.021 0.021 0.021 0.079 0.082 0.013 0.873 1.195 0.94 0.865 1.184 0.94

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA 0.103 NA NA 0.25 0.235 NA -0.394 0.533 NA -0.365 0.549 NA

γx1 NA -1.187 NA NA 0.163 0.147 NA -1.499 -0.924 NA -1.478 -0.91 NA
γS1 NA 0.201 NA NA 0.178 0.144 NA -0.075 0.491 NA -0.075 0.487 NA

W
av

e
2 γ02 NA -1.251 NA NA 0.441 0.392 NA -2.087 -0.547 NA -2.028 -0.514 NA

γx2 NA -1.583 NA NA 0.264 0.224 NA -2.063 -1.189 NA -2.026 -1.165 NA
γS2 NA 0.416 NA NA 0.098 0.088 NA 0.258 0.605 NA 0.251 0.591 NA

W
av

e
3 γ03 NA -1.333 NA NA 0.438 0.368 NA -2.102 -0.666 NA -2.058 -0.641 NA

γx3 NA -1.614 NA NA 0.295 0.222 NA -2.084 -1.218 NA -2.054 -1.199 NA
γS3 NA 0.259 NA NA 0.063 0.05 NA 0.169 0.364 NA 0.166 0.358 NA

W
av

e
4 γ04 NA -1.406 NA NA 0.434 0.387 NA -2.231 -0.712 NA -2.169 -0.682 NA

γx4 NA -1.656 NA NA 0.26 0.232 NA -2.152 -1.245 NA -2.117 -1.223 NA
γS4 NA 0.188 NA NA 0.042 0.037 NA 0.122 0.268 NA 0.119 0.261 NA

N=200 (convergence rate: 100/104 ≈ 96.15%)

G
ro

w
th

C
u
rv

e I 1 1.154 0.154 0.154 0.141 0.135 0.062 0.892 1.421 0.75 0.891 1.419 0.76
S 3 2.986 -0.014 -0.005 0.187 0.176 0.066 2.648 3.336 0.92 2.644 3.331 0.93
var(I) 1 1.019 0.019 0.019 0.233 0.25 0.117 0.583 1.562 0.96 0.552 1.517 0.97
var(S) 4 4.034 0.034 0.008 0.516 0.536 0.557 3.107 5.202 0.96 3.043 5.11 0.96
cov(IS) 0 0.182 0.182 0.182 0.311 0.263 0.199 -0.347 0.691 0.85 -0.338 0.697 0.85
var(e) 1 1.047 0.047 0.047 0.103 0.104 0.024 0.863 1.27 0.92 0.852 1.255 0.94

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA 0.043 NA NA 0.375 0.32 NA -0.654 0.608 NA -0.594 0.642 NA

γx1 NA -1.269 NA NA 0.266 0.212 NA -1.739 -0.911 NA -1.69 -0.883 NA
γS1 NA 0.227 NA NA 0.272 0.197 NA -0.148 0.631 NA -0.15 0.616 NA

W
av

e
2 γ02 NA -1.46 NA NA 0.675 0.542 NA -2.674 -0.532 NA -2.541 -0.471 NA

γx2 NA -1.683 NA NA 0.373 0.311 NA -2.387 -1.165 NA -2.303 -1.125 NA
γS2 NA 0.463 NA NA 0.153 0.123 NA 0.253 0.738 NA 0.24 0.707 NA

W
av

e
3 γ03 NA -1.442 NA NA 0.608 0.502 NA -2.541 -0.573 NA -2.457 -0.535 NA

γx3 NA -1.718 NA NA 0.632 0.322 NA -2.445 -1.19 NA -2.377 -1.153 NA
γS3 NA 0.271 NA NA 0.091 0.069 NA 0.154 0.421 NA 0.148 0.41 NA

W
av

e
4 γ04 NA -1.454 NA NA 0.597 0.478 NA -2.471 -0.601 NA -2.4 -0.563 NA

γx4 NA -1.757 NA NA 0.37 0.304 NA -2.414 -1.227 NA -2.364 -1.194 NA
γS4 NA 0.196 NA NA 0.056 0.046 NA 0.114 0.295 NA 0.11 0.287 NA

N=100 (convergence rate: 100/138 ≈ 72.46%)

G
ro

w
th

C
u
rv

e I 1 1.161 0.161 0.161 0.252 0.197 0.129 0.776 1.551 0.81 0.775 1.549 0.81
S 3 3.028 0.028 0.009 0.254 0.259 0.133 2.535 3.548 0.97 2.528 3.539 0.97
var(I) 1 0.937 -0.063 -0.063 0.332 0.354 0.246 0.375 1.751 0.92 0.315 1.637 0.90
var(S) 4 4.136 0.136 0.034 0.845 0.809 1.414 2.817 5.971 0.93 2.686 5.757 0.94
cov(IS) 0 0.15 0.15 0.15 0.453 0.394 0.39 -0.657 0.902 0.88 -0.633 0.918 0.88
var(e) 1 1.153 0.153 0.153 0.34 0.176 0.184 0.847 1.529 0.86 0.825 1.494 0.89

M
is

si
n
gn

es
s

P
a
ra

m
et

er
s

W
av

e
1 γ01 NA -0.711 NA NA 5.806 1.29 NA -3.446 1.305 NA -3.079 1.381 NA

γx1 NA -3.4 NA NA 6.975 1.599 NA -7.14 -1.402 NA -6.495 -1.259 NA
γS1 NA 0.468 NA NA 4.682 0.964 NA -1.317 2.211 NA -1.201 2.072 NA

W
av

e
2 γ02 NA -3.803 NA NA 9.225 1.602 NA -7.571 -1.469 NA -6.978 -1.269 NA

γx2 NA -3.378 NA NA 6.747 1.042 NA -5.814 -1.866 NA -5.463 -1.739 NA
γS2 NA 1.029 NA NA 2.14 0.367 NA 0.49 1.883 NA 0.444 1.762 NA

W
av

e
3 γ03 NA -3.148 NA NA 6.553 1.128 NA -5.681 -1.244 NA -5.386 -1.19 NA
γx3 NA -3.039 NA NA 4.774 0.759 NA -4.767 -1.788 NA -4.554 -1.735 NA
γS3 NA 0.534 NA NA 0.974 0.156 NA 0.275 0.888 NA 0.264 0.839 NA

W
av

e
4 γ04 NA -2.582 NA NA 4.213 1.27 NA -5.474 -0.588 NA -5.149 -0.48 NA

γx4 NA -3.259 NA NA 5.963 0.989 NA -5.478 -1.717 NA -5.176 -1.583 NA
γS4 NA 0.297 NA NA 0.719 0.146 NA 0.064 0.611 NA 0.055 0.579 NA

Note. Abbreviations are as given in Table 3 .
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Table 10. Summarized Estimates from LGCM with Ignorable Missingness (X)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=1000 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.009 0.009 0.009 0.051 0.052 0.005 0.906 1.111 0.94 0.906 1.111 0.93
S 3 2.711 -0.289 -0.096 0.078 0.077 0.095 2.56 2.863 0.04 2.561 2.863 0.04
var(I) 1 1.008 0.008 0.008 0.108 0.104 0.022 0.813 1.221 0.95 0.807 1.214 0.95
var(S) 4 3.837 -0.163 -0.041 0.232 0.223 0.13 3.422 4.297 0.87 3.409 4.279 0.86
cov(IS) 0 0.004 0.004 0.004 0.115 0.109 0.025 -0.214 0.214 0.96 -0.21 0.216 0.96
var(e) 1 0.999 -0.001 -0.001 0.044 0.043 0.004 0.919 1.086 0.92 0.917 1.084 0.92

N=500 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 0.999 -0.001 -0.001 0.073 0.074 0.011 0.854 1.143 0.98 0.855 1.143 0.98
S 3 2.711 -0.289 -0.096 0.099 0.109 0.105 2.497 2.925 0.21 2.497 2.925 0.21
var(I) 1 0.973 -0.027 -0.027 0.146 0.146 0.043 0.705 1.277 0.98 0.693 1.263 0.98
var(S) 4 3.852 -0.148 -0.037 0.371 0.317 0.259 3.276 4.518 0.86 3.248 4.48 0.88
cov(IS) 0 -0.008 -0.008 -0.008 0.154 0.154 0.047 -0.317 0.287 0.96 -0.311 0.292 0.96
var(e) 1 1.014 0.014 0.014 0.06 0.062 0.008 0.9 1.141 0.96 0.895 1.136 0.95

N=300 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.009 0.009 0.009 0.103 0.096 0.02 0.821 1.197 0.89 0.821 1.197 0.89
S 3 2.687 -0.313 -0.104 0.139 0.141 0.137 2.411 2.964 0.34 2.411 2.963 0.35
var(I) 1 1.006 0.006 0.006 0.189 0.194 0.073 0.657 1.416 0.94 0.639 1.391 0.94
var(S) 4 3.816 -0.184 -0.046 0.412 0.41 0.372 3.091 4.694 0.93 3.045 4.631 0.92
cov(IS) 0 0.045 0.045 0.045 0.214 0.2 0.088 -0.359 0.429 0.94 -0.351 0.435 0.94
var(e) 1 1.01 0.01 0.01 0.075 0.08 0.012 0.864 1.179 0.96 0.857 1.17 0.94

N=200 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.019 0.019 0.019 0.098 0.116 0.023 0.792 1.247 0.97 0.791 1.246 0.97
S 3 2.69 -0.31 -0.103 0.178 0.173 0.157 2.352 3.029 0.52 2.351 3.027 0.52
var(I) 1 0.99 -0.01 -0.01 0.232 0.236 0.11 0.576 1.5 0.94 0.548 1.461 0.95
var(S) 4 3.884 -0.116 -0.029 0.47 0.509 0.495 3.004 4.992 0.96 2.938 4.898 0.96
cov(IS) 0 0.066 0.066 0.066 0.25 0.246 0.127 -0.434 0.538 0.91 -0.422 0.546 0.92
var(e) 1 1.02 0.02 0.02 0.094 0.1 0.019 0.843 1.233 0.95 0.833 1.219 0.97

N=100 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.031 0.031 0.031 0.174 0.161 0.057 0.714 1.348 0.94 0.715 1.348 0.95
S 3 2.699 -0.301 -0.1 0.239 0.248 0.209 2.21 3.187 0.78 2.212 3.187 0.78
var(I) 1 0.863 -0.137 -0.137 0.275 0.315 0.197 0.354 1.579 0.94 0.302 1.487 0.86
var(S) 4 3.951 -0.049 -0.012 0.815 0.753 1.247 2.726 5.66 0.92 2.601 5.456 0.92
cov(IS) 0 0.063 0.063 0.063 0.35 0.35 0.25 -0.658 0.728 0.91 -0.637 0.744 0.94
var(e) 1 1.063 0.063 0.063 0.137 0.149 0.045 0.808 1.39 0.94 0.788 1.361 0.95

Note. Abbreviations are as given in Table 3.
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