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Abstract. For inference involving a covariance matrix, inverse Wishart
priors are often used in Bayesian analysis. To help researchers better
understand the influence of inverse Wishart priors, we provide a con-
crete example based on the analysis of a two by two covariance matrix.
Recommendations are provided on how to specify an inverse Wishart
prior.
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In Bayesian analysis, an inverse Wishart (IW) distribution is often used as a
prior for the variance-covariance parameter matrix (e.g., Barnard, McCulloch,x&
Meng, 2000; Gelmanxet al., 2014; Leonard, Hsu,xet al., 1992). The IW prior
is very popular because it is conjugate to normal data. For best illustration,
consider a multivariate normal (MN) variable. Let X = (X1, X2, . . . , Xp) denote
a vector of p variables

X|Σ ∼MN(0,Σ)

with the mean vector µ = 0 and the variance-covariance matrix Σ. The density
function is

p(x|Σ) = (2π)−p/2|Σ|−1/2 exp

(
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2
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)
.

Given a sample D = (x1, . . . ,xn) with n being the sample size, the likelihood
function for Σ is

L(Σ|D) ∝ p(D|Σ) ∝ |Σ|−n/2 exp
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where S =
∑n

i xix
T
i /n is the biased sample covariance matrix (the sample is

centered at 0). Note that this is also the maximum likelihood estimate of Σ. To
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get the posterior distribution of Σ for Bayesian inference, one needs to specify a
prior distribution p(Σ) for it. With the prior, the posterior distribution can be
obtained through the Bayes’ Theorem:

p(Σ|D) =
p(D|Σ)p(Σ)

p(D)
.

1 The Inverse Wishart Prior

The most commonly used prior for Σ is probably the inverse Wishart conjugate
prior. The density function of an inverse Wishart distribution IW (V,m) with
the scale matrix V and the degrees of freedom m for a p× p variance-covariance
matrix Σ is

p(Σ) =
|V|m/2|Σ|−(m+p+1)/2 exp

[
−tr(VΣ−1)/2

]
2mp/2Γ (m/2)

.

The inverse Wishart distribution is a multivariate generalization of the inverse
Gamma distribution. The mean of it is

E(Σ) =
V

m− p− 1
(1)

and the variance of each element of Σ = (σij) is

V ar(σij) =
(m− p+ 1)v2ij + (m− p− 1)viivjj

(m− p)(m− p− 1)2(m− p− 3)
.

Especially,

V ar(σii) =
2v2ii

(m− p− 1)2(m− p− 3)
. (2)

With an inverse Wishart prior IW (V0,m0) based on known V0 and m0, the
posterior distribution of Σ is

p(Σ|D) ∝ p(D|Σ)p(Σ)

= |Σ|−n/2 exp
[
−n

2
tr(SΣ−1)

]
|Σ|−(m0+p+1)/2 exp

[
−tr(V0Σ

−1)/2
]

= |Σ|−(n+m0+p+1)/2 exp

{
−1

2
tr
[
(nS + V0) Σ−1

]}
.

From it, we can get the posterior distribution for Σ, also an inverse Wishart
distribution:

Σ|D ∼IW (nS + V0, n+m0) = IW (V1,m1) (3)

with the updated scale matrix and degrees of freedom.
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1.1 Information in an inverse Wishart prior

The posterior mean of Σ is

E(Σ|D) =
nS + V0

n+m0 − p− 1

=
n

n+m0 − p− 1
S +

(
1− n

n+m0 − p− 1

)
V0

m0 − p− 1
. (4)

Therefore, the posterior mean is a weighted average of the sample covariance
matrix S and the prior mean V0/(m0 − p − 1). When the sample size n → ∞,
the posterior mean approaches the sample mean given fixed m0 and p.

The information in a prior can be connected to data. For example, if we
specify the prior IW (V0,m0) as V0 = n0S and m0 = n0, then the informative
in the prior is equivalent to n0 participants in the sample. Note that if we set
V0 = (m0−p−1)S, then E(Σ|D) = S, meaning the posterior mean is the same
as the sample covariance matrix.

2 Precision Matrix and the Wishart Prior

In practice, the BUGS program is probably the most widely used software for
Bayesian analysis (e.g., Lunn, Jackson, Best, Thomas,x& Spiegelhalter, 2012;
Ntzoufras, 2009). BUGS uses the precision matrix, defined as the inverse of the
covariance matrix, to specify the multivariate normal distribution. Let P = Σ−1,
then the normal density function can be written as

p(x|P) = (2π)−p/2|P|1/2 exp

(
−1

2
xTPx

)
.

The use of the precision matrix has the computational advantage by avoiding
the inverse of matrix in the density calculation in certain situations.

For the precision matrix P, a Wishart prior W (U0, w0) with the scale matrix
U0 and degrees of freedom w0 is used (e.g., Lunnxet al., 2012). The density
function of the prior is

p(P) =
|P|(w0−p−1)/2 exp

[
−tr(U−1

0 P)/2
]

2w0p/2Γ (w0/2)|U0|w0/2
.

Given the sample D = (x1, . . . ,xn), the posterior distribution of P is

p(P|D) ∝
n∏

i=1

[
|P|1/2 exp
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|P|(w0−p−1)/2 exp
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[
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0 )P
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.
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Therefore, the posterior is also a Wishart distribution W (U1, w1) with U1 =(
nS + U−1

0

)−1
and w1 = n+ w0. The posterior mean of P is

E(P|D) = w1U1 = (n+ w0)
(
nS + U−1

0

)−1
.

Based on the relationship between Wishart and inverse Wishart distributions
(Mardia, Bibby,x& Kent, 1982),

Σ|D =P−1|D ∼ IW (U−1
1 , w1) = IW (nS + U−1

0 , n+ w0). (5)

The posterior mean of Σ is

E(Σ|D) =
U−1

1

w1 − p− 1
=

nS + U−1
0

n+ w0 − p− 1
. (6)

Comparing the posterior distributions in Equation (3) and (5), giving an
inverse Wishart distribution IW (V0,m0) prior to the covariance matrix Σ is
the same as giving a Wishart distribution W (V−1

0 ,m0) prior to the precision
matrix P = Σ−1. However, note that

[E(P|D)]
−1

=
nS + U−1

0

n+ w0
6= E(Σ|D) =

nS + U−1
0

n+ w0 − p− 1
.

Therefore, one cannot simply invert the posterior mean of the precision matrix
to get the posterior mean of the covariance matrix.

3 Numerical Examples

For illustration, we look at a concrete experiment. Suppose we have a sample of
size n = 100 with the sample covariance matrix (p = 2)

S =

(
5 2
2 10

)
.

The aim is to estimate Σ through Bayesian method. We now consider the use
of different priors and evaluate their influence. Given the connection between
the Wishart and inverse Wishart distributions, we focus our discussion on the
specification of an inverse Wishart prior for the covariance matrix Σ .

3.1 Priors based on an identity scale matrix

For an inverse Wishart prior IW (V0,m0), we need to specify its scale matrix
and degrees of freedom. In practice, an identity matrix has been frequently used
as the scale matrix. Therefore, we first set V0 = I and vary the degrees of
freedom by letting m0 = 2, 5, 10, 50, 100. Note that when m0 = 2, the prior is
not a proper distribution but the posterior is still a proper distribution. The
mean and variance of the posterior distribution are given in Table 1. First, when
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m0 = 2 or 5, the posterior means are close to the sample covariance matrix.
With the increase of m0, the posterior means become smaller and the posterior
variances also become smaller. This can be easily explained by Equation (4)
– the posterior mean is a weighted average between the sample mean and the
prior mean. Take the element Σ11 as an example. From the data, S11 = 5.
The mean of the inverse Wishart prior is V0,11/(m0 − 3) = 1/(m0 − 3). When
m0 = 5, the prior mean is 0.5 and when m0 = 100, the prior mean is about 0.01.
Furthermore, when m0 = 5, the weight for the prior mean is about 0.05 but
when m0 = 100, the weight increases to about 0.5. Therefore, with the increase
of m0, the posterior mean is pulled towards the prior mean since the prior mean
has a greater weight.

Table 1. Posterior inference of the covariance matrix parameter based on the inverse
Wishart prior with the scale matrix specified based on an identity matrix.

Mean Variance
S 2 5 10 50 100 2 5 10 50 100

IW (I,m0)

Σ11 5 5.06 4.91 4.68 3.41 2.54 0.528 0.483 0.418 0.160 0.066
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.516 0.516 0.447 0.172 0.071
Σ22 10 10.11 9.81 9.36 6.81 5.08 2.108 1.926 1.667 0.640 0.265

IW [(m0 − p− 1)I,m0]

Σ11 5 5.04 4.92 4.74 3.72 3.03 0.524 0.484 0.428 0.191 0.094
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.518 0.518 0.454 0.194 0.091
Σ22 10 10.09 9.82 9.41 7.12 5.57 2.100 1.930 1.687 0.700 0.318

In the above specification, since V0 ≡ I, the prior mean also changes along
the change of m0. In practice, e.g., in sensitivity analysis, it can be helpful to
fix the prior mean. To achieve this, one can set V0 = (m0 − p− 1)I. Therefore,
when m0 = 5, the scale matrix will be 2I, and when m0 = 100, the scale matrix
will be m0 = 97I. With such specification, the prior mean is always I.

3.2 Priors with the scale matrix formed from data

Another way to specify the prior is to construct the scale matrix for the inverse
Wishart distribution based on the sample data. Intuitively, we can set V0 = S
and change m0. From the top of Table 2, with the increase of m0, the posterior
mean deviates from the sample covariance matrix. This is again because that
the prior mean becomes smaller with the increase of m0 since the prior mean is
equal to S/m0. To maintain the same prior mean while changing the information
in the prior, we set V0 = (m0−p−1)S. With such specification, the prior mean
is always S and the posterior mean is also S as we can see from the bottom
part of Table 2. With the increase of the degrees of freedom, more information
is supplied through the prior and we can observe the decrease in the posterior
variance.
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Table 2. Posterior inference of the covariance matrix parameter based on the priors
with the scale matrix constructed from data.

Mean Variance
S 2 5 10 50 100 2 5 10 50 100

IW (S,m0)

Σ11 5 5.10 4.95 4.72 3.44 2.56 0.537 0.490 0.424 0.163 0.067
Σ12 2 1.98 1.98 1.89 1.37 1.03 0.525 0.525 0.455 0.175 0.072
Σ22 10 10.20 9.90 9.44 6.87 5.13 2.146 1.961 1.697 0.651 0.270

IW [(m0 − p− 1)S,m0]

Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 2.00 2.00 2.00 2.00 2.00 0.536 0.536 0.510 0.370 0.276
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

3.3 Other types of specifications

We now consider several other types of specifications of the scale matrix to
illustrate the influence of the prior. In all the the specifications, we maintain the
same prior mean by setting the prior in the form of IW [(m0−p−1)V0,m0]. The
priors considered and the associated posterior mean and variance are summarized
in Table 3.

For prior P1, it assumes that Σ11 is 10 times of Σ22, which is not con-
sistent with the sample data. As expected, the posterior mean is pulled to-
wards prior mean with the increase of m0. Notably, the variance of Σ11 does not
monotonously decrease with the increase of m0 as one might incorrectly assume
that the use of prior information will lead to more precise results. This is because
the variance of the inverse Wishart distribution is related to its mean as shown
in Equation (2), and the prior is not consistent with data.

For Priors P2, P3, P4, and the one at the bottom of Figure 2, the scale
matrices have the same diagonal values and different off-diagonal values. Note
that changing the values on the off-diagonals influences neither the posterior
means nor variances on the diagonals, which can also be seen in Equations
(1) and (2). As expected, changing the off-diagonal values influences both the
posterior means and variances. However, the posterior variances are relatively
stable.

3.4 Using priors for a precision matrix P

The influence of the priors on the precision matrix is the same as for the covari-
ance matrix because of the connection of Wishart and inverse Wishart distribu-
tion – if Σ ∼ IW (V0,m0), P = Σ−1 ∼ W (V−1

0 ,m0). If the prior IW (I,m0)
is specified for the covariance matrix, it is equivalent to use W (I,m0) for the
precision matrix. As discussed earlier, to maintain the same prior mean, we can
use IW [(m0 − p− 1)I,m0] for Σ. In this case, the prior for the precision matrix
should be W [I/(m0 − p− 1),m0]. Similarly, if we specify a prior for Σ based on
the data using IW [(m0 − p − 1)S,m0], then the prior for the precision matrix
would be W [S−1/(m0 − p− 1),m0].
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Table 3. Posterior inference of the covariance matrix parameter with additional spec-
ifications of inverse Wishart priors IW [(m0 − p− 1)V0,m0].

Mean Variance
S 2 5 10 50 100 2 5 10 50 100

P1: V0 =

(
10 0
0 1

)
Σ11 5 4.95 5.10 5.33 6.60 7.46 0.505 0.520 0.541 0.601 0.571
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.535 0.535 0.507 0.335 0.217
Σ22 10 10.09 9.82 9.41 7.12 5.57 2.100 1.930 1.687 0.700 0.318

P2: V0 =

(
5 −2
−2 10

)
Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 1.92 1.92 1.74 0.72 0.03 0.532 0.532 0.501 0.346 0.255
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

P3: V0 =

(
5 0
0 10

)
Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.534 0.534 0.505 0.355 0.260
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

P4: V0 =

(
5 −5
−5 10

)
Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 1.86 1.86 1.54 -0.24 -1.45 0.530 0.530 0.495 0.343 0.266
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

4 Discussion

Although not without issues, Wishart and inverse Wishart distributions are still
commonly used prior distributions for Bayesian analysis involving a covariance
matrix (Alvarez, Niemi,x& Simpson, 2014; Liu, Zhang,x& Grimm, 2016). As we
have shown, the use of the inverse Wishart prior has the advantage of conjugate,
which simplifies the posterior distribution. By using an inverse Wishart prior,
the posterior distribution is also an inverse Wishart distribution given normally
distributed data. The posterior mean can be conveniently expressed as a weighted
average of the prior mean and the sample covariance matrix. The influence of
the prior can also be clearly quantified.

When reliable information is available, an informative inverse Wishart prior
can be constructed. For example, previous estimates on the covariance matrix
could be available. In this situation, such covariance matrix estimates can be
used to construct the scale matrix. If the variance estimates of the covariance
matrix is also available, one can determine the degrees of freedom for the inverse
Wishart prior based on the variance expression in Equation (2), which can be
done using the R package discussed in the Appendix. The degrees of freedom
based on each individual element may vary. The overall degrees of freedom for the
inverse Wishart distribution can be determined based on the practical research
question.
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When no reliable information is available, an identity matrix has often been
suggested to use as the scale matrix for the inverse Wishart distribution for
the covariance matrix and Wishart distribution for the precision matrix (e.g.,
Congdon, 2014). But as one can see from the numerical example, how much
information such a prior has is related to the covariance matrix. We believe a
better way to specify an uninformative prior is to determine the scale matrix
based on the sample covariance matrix. Therefore, we recommend the prior
IW [(m0 − p− 1)S,m0]. As for the precision matrix, one can use W [S−1/(m0 −
p− 1),m0].

Appendix

The R package wishartprior is developed and made available on GitHub to help
understand the Wishart and inverse Wishart priors. The URL to the package is
https://github.com/johnnyzhz/wishartprior. The package can be used to
generate random numbers from an inverse Wishart distribution. It can calculate
the mean and variance of Wishart and inverse Wishart distributions. Using the
package, one can investigate the influence of priors.
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